Skip to main content
Log in

Employing the bilateral filter to improve the derivative-based transforms for gravity and magnetic data sets

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

In the literature, there are numerous derivative-based transforms for gravity and magnetic data sets, with which relevant features can be highlighted. However, almost all of them face the problem of instability in derivative calculation. Therefore, before applying derivative-based transforms, noise reduction is often applied to improve the quality of the data. Nevertheless, the application of conventional filters typically blurs horizontal gradients in the data, which can adversely affect subsequent transforms, for example, the sharp boundaries of the causative bodies may be obscured. To handle the above issue, this study is the first to employ the bilateral filter, used in digital image processing, for improving the derivative-based transforms for gravity and magnetic data sets. The filter replaces each data point by a weighted average of its neighbors. The established weights take into account both the geometric and amplitude closeness between the data points used. Synthetic tests indicate that the proposed method can effectively filter potential field data without distorting the structural features greatly. Thus, the performance of subsequent derivative-based transforms can be improved. The new method was applied to the magnetic data collected over the Dapai polymetallic deposit in Fujian Province, South China. This real example shows that the results obtained from the proposed method contain more pronounced features of existing faults and thus contributes to further geological interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedi M., Gholami A. and Norouzi G.H., 2012. A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran. Comput. Geosci., 52, 269–280.

    Article  Google Scholar 

  • Agarwal B.N.P. and Lal T., 1969. Calculation of the second vertical derivative of gravity field. Pure Appl. Geophys., 76, 5–16.

    Article  Google Scholar 

  • Baniamerian J., Liu S. and Abbas M.A., 2018. Stable computation of the vertical gradient of potential field data based on incorporating the smoothing filters. Pure Appl. Geophys., 175, 2785–2806.

    Article  Google Scholar 

  • Blakely R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Cordell L., 1979. Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico. New Mexico Geological Society Guidebook, 30th Field Conference, 59–64.

    Google Scholar 

  • Essa K.S., 2007. Gravity data interpretation using the s-curves method. J. Geophys. Eng., 4, 204–213.

    Article  Google Scholar 

  • Fedi M., Lenarduzzi L., Primiceri, R. and Quarta T., 2000. Localized denoising filtering using the wavelet transform. Pure Appl. Geophys., 157, 1463–1491.

    Article  Google Scholar 

  • Fedi M. and Florio G., 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys. Prospect., 49, 40–58.

    Article  Google Scholar 

  • Ganguli S.S. and Dimri V.P., 2013. Interpretation of gravity data using eigenimage with Indian case study: A SVD approach. J. Appl. Geophys., 95, 23–35.

    Article  Google Scholar 

  • Hinze W.J., von Frese R.R.B. and Saad A.H., 2012. Gravity and Magnetic Exploration, Principles, Practices, and Applications. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Honkasalo T., 1970. Geophysical interpretation of gravity anomalies. Stud. Geophys. Geod., 14, 254–263.

    Article  Google Scholar 

  • Luo Y., Marhoon M., Dossary S.A. and Alfaraj M., 2002. Edge-preserving smoothing and applications. The Leading Edge, 21, 136–158.

    Article  Google Scholar 

  • Lu Y.H. and Lu W.K., 2009. Edge-preserving polynomial fitting method to suppress random seismic noise. Geophysics, 74, 69–73.

    Article  Google Scholar 

  • Mesko A., 1984. Digital Filtering: Applications in Geophysical Exploration for Oil. Pitman Publishing, London, U.K.

    Google Scholar 

  • Nabighian M.N., 1984. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49, 780–786.

    Article  Google Scholar 

  • Oldenburg D.W., 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39, 526–536.

    Article  Google Scholar 

  • Pašteka R., Richter F.P., Karcol R., Brazda K. and Hajach M., 2009. Regularized derivatives of potential fields and their role in semi-automated interpretation methods. Geophys. Prospect., 57, 507–516.

    Article  Google Scholar 

  • Prutkin I. and Saleh A., 2009. Gravity and magnetic data inversion for 3D topography of the Moho discontinuity in the northern Red Sea area, Egypt. J. Geodyn., 47, 237–245.

    Article  Google Scholar 

  • Prutkin I., Vajda P., Jahr T., Bleibinhaus F., Novak P. and Tenzer R., 2017. Interpretation of gravity and magnetic data with geological constraints for 3D structure of the Thuringian Basin, Germany. J. Appl. Geophys., 136, 35–41.

    Article  Google Scholar 

  • Prutkin I., Vajda P., Tenzer R. and Bielik M., 2011. 3D inversion of gravity data by separation of sources and the method of local corrections: Kolarovo gravity high case study. J. Appl. Geophys., 75, 472–478.

    Article  Google Scholar 

  • Roy I.G., 2013. On computing gradients of potential field data in the space domain. J. Geophys. Eng., 10, 035007.

    Article  Google Scholar 

  • Sobouti A., Motagh M. and Sharifi M.A., 2016. Inversion of surface gravity data for 3-D density modeling of geologic structures using total variation regularization. Stud. Geophys. Geod., 60, 69–90.

    Article  Google Scholar 

  • Tian Y.F., Li S.S., Liu X.G. and Fu G.F., 2009. Low-pass filter and its effect in data processing of aerial gravity measurements. J. Geodesy Geodyn., 29(6), 130–132.

    Google Scholar 

  • Tomasi C. and Manduchi R., 1998. Bilateral filtering for gray and color images. Sixth International Conference on Computer Vision. The Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ, DOI: https://doi.org/10.1109/ICCV.1998.710815.

    Google Scholar 

  • Wang J., Meng X.H., Guo L.H., Chen Z.X. and Li F., 2014, A correlation-based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising. J. Geophys. Eng., 11, 055007.

    Article  Google Scholar 

  • Wang J., Meng X.H. and Li F., 2017a. New improvements for lineaments study of gravity data with improved Euler inversion and phase congruency of the field data. J. Appl. Geophys., 136, 326–334.

    Article  Google Scholar 

  • Wang J., Meng X.H. and Li F., 2017b. Fast Nonlinear generalized inversion of gravity data with application to the three dimensional crustal density structure of Sichuan Basin, Southwest China. Pure Appl. Geophys., 174, 4101–4117.

    Article  Google Scholar 

  • Wang J., Meng X.H., Guo L.H. and Li F., 2018. An empirical mode decomposition based noise cancelation method for potential field data along with a new stopping criterion. Arabian J. Geosci., 11, 418.

    Article  Google Scholar 

  • Yang J., Agterberg F.P. and Cheng Q.M., 2015. A novel filtering technique for enhancing mineralization associated geochemical and geophysical anomalies. Comput. Geosci., 79, 94–104.

    Article  Google Scholar 

  • Ye Z., Tenzer R. and Sneeuw N., 2018. Comparison of methods for a 3-D density inversion from airborne gravity gradiometry. Stud. Geophys. Geod., 62, 1–16.

    Article  Google Scholar 

  • Yuan S.Y. and Wang S.X., 2013. Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints. J. Geophys. Eng., 10, 025001.

    Article  Google Scholar 

  • Yuan Y., Zhang D., Feng H.B., Di Y.J., Wang C.M. and Ni J.H., 2014. The Re-Os isotope geochronology of Dapai iron polymetallic ore deposit in Yongding county, Fujian province and its genetic significance. Acta Geologica Sinica, 88, 1025–1026.

    Article  Google Scholar 

  • Zeng X.N., Li X.H., Jia W.M., Chen D.X. and Liu D.Z., 2015. Iterative Wiener filter for unstable linear transformations of potential field data. J. Appl. Geophys., 115, 100–109.

    Article  Google Scholar 

  • Zhang Z., Zuo R. and Cheng Q., 2014. The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology. Int. J. Earth Sci., 104, 663–682.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Xiaohong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Meng, X. Employing the bilateral filter to improve the derivative-based transforms for gravity and magnetic data sets. Stud Geophys Geod 63, 215–228 (2019). https://doi.org/10.1007/s11200-018-0162-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-0162-y

Keywords

Navigation