Skip to main content
Log in

IRG2018: A regional geoid model in Iran using Least Squares Collocation

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aim of this study is to determine an accurate geoid model for Iran based on the Least Squares Collocation method in the framework of the Remove — Compute — Restore technique. In areas suffering from a lack of homogeneous and accurate gravity anomaly data, as is the case of Iran, the choice of the most compatible global gravity model has a significant impact on the estimated form of the geoid. Different combined and satellite-only global gravity models were therefore analyzed for Iran, and EIGEN6C4 was selected as the best one. The Shuttle Radar Topography Mission height model was used for the residual terrain correction. The covariance modeling, a crucial step in the Least Squares Collocation method, was based on two strategies. In the first, the study area was divided into four sub-areas, and then an individual empirical covariance was computed and a covariance model fitted to each of them. In the second, an empirical covariance was computed using all terrestrial gravity data, and a unique covariance model was fitted to it. Despite some border effects, the former strategy showed slightly better performance according to the resulting statistics, and therefore it was preferred for the estimation of the geoid model called IRG2018. To remove the offset of IRG2018 with respect to GNSS/Leveling-derived geoid heights, two alternative approaches were tested: subtracting a fitting polynomial surface or directly using the GNSS/Leveling data as an input to the IRG2018 computation process. Evaluation of the results, based on an independent control set of approximately half of available GNSS/Leveling points, showed an advantage of the latter approach, with an estimated accuracy of about 20 cm in terms of RMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amjadiparvar B., Sideris M.G., Rangelova E. and Ardalan A.A., 2011. Evaluation of GOCE-based global gravity field models in Iran. Abstract. American Geophysical Union, Fall Meeting 2011, Abstract G43A-0749.

    Google Scholar 

  • Brockmann J.M., Zehentner N., Höck E., Pail R., Loth I., Mayer-Gürr T. and Schuh W.-D., 2014. EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys. Res. Lett., 41, 8089–8099, DOI: https://doi.org/10.1002/2014gl061904.

    Article  Google Scholar 

  • Bruinsma S.L., Förste C., Abrikosov O., Marty J.-C., Rio M.-H., Mulet S. and Bonvalot S., 2013. The new ESA satellite-only gravity field model via the direct approach. Geophys. Res. Lett., 40, 3607–3612, DOI: https://doi.org/10.1002/grl.50716.

    Article  Google Scholar 

  • Bucha B., Janák J., Papčo J. and Bezdĕk A., 2016. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophys. J. Int., 207, 949–966, DOI: https://doi.org/10.1093/gji/ggw311.

    Article  Google Scholar 

  • Foroughi I., Afrasteh Y., Ramouz S. and Safari A., 2017. Local evaluation of Earth gravitational models, case study: Iran. Geod. Cartogr., 43, 1–13, DOI: https://doi.org/10.3846/20296991.2017.1299839.

    Article  Google Scholar 

  • Forsberg R., 1984. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity field Modelling. Report 355. Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH.

    Book  Google Scholar 

  • Förste C., Bruinsma S.L., Abrikosov O., Lemoine J.M., Marty J.C., Flechtner F., Balmino G., Barthelmes F. and Biancale R., 2014. EIGEN-6C4: The Latest Combined Global Gravity Field Model Including GOCE Data up to Degree and Order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, DOI: https://doi.org/10.5880/icgem.2015.1.

    Google Scholar 

  • Gatti A. and Reguzzoni M., 2017. GOCE Gravity Field Model by Means of the Space-Wise Approach (Release R5). GFZ Data Services DOI: https://doi.org/10.5880/icgem.2017.005.

    Google Scholar 

  • Hatam C.Y., 2010. Etablissement des nouveaux reseaux multi-observations geodesiques et gravimetriques et determination du geoide en Iran. PhD Thesis. Geophysics, University Montpellier 2, Montpellier, France (in French).

    Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman San Francisco, CA.

    Google Scholar 

  • Hirt C., 2011. Assessment of EGM2008 over Germany using accurate quasigeoid heights from vertical deflections, GCG05 and GPS/levelling. Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 136(3), 138–149.

    Google Scholar 

  • Hirt C. and Kuhn M., 2014. Band-limited topographic mass distribution generates full-spectrum gravity field: Gravity forward modeling in the spectral and spatial domains revisited. J. Geophys. Res.-Solid Earth, 119, 3646–3661, DOI: https://doi.org/10.1002/2013jb010900.

    Article  Google Scholar 

  • Kiamehr R., 2009. Evaluation of the new Earth gravitational model (EGM2008) in Iran. Abstract. Geophys. Res. Abs., 11, EGU2009–330.

    Google Scholar 

  • Kiamehr R. and Sjöberg L.E., 2005. Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran. J. Geodesy, 79, 540–551, DOI: https://doi.org/10.1007/s00190-005-0006-8.

    Article  Google Scholar 

  • Knudsen P., 1987. Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bull. Geod., 61, 145–160.

    Article  Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. Herbert Wichmann Verlag Karlsruhe, Germany.

    Google Scholar 

  • NASA JPL, 2013. NASA Shuttle Radar Topography Mission Global 1 Arc Second (Data Set). NASA LP DAAC DOI: 10.5067/measures/srtm/srtmgl1.003.

    Google Scholar 

  • Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.-D, Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning, C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843, DOI: https://doi.org/10.1007/s00190-011-0467-x.

    Article  Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.-Solid Earth, 117, B04406, DOI: https://doi.org/10.1029/2011JB008916.

  • Reguzzoni M. and Tselfes N., 2008. Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J. Geodesy, 83, 13–29, DOI: https://doi.org/10.1007/s00190-008-0225-x.

    Article  Google Scholar 

  • Rexer M., Hirt C., Bucha B. and Holmes S., 2017. Solution to the spectral filter problem of residual terrain modelling (RTM). J. Geodesy, 92, 675–690, DOI: https://doi.org/10.1007/s00190-017-1086-y.

    Article  Google Scholar 

  • Gruber T., Rummel R., Idhe J. Liebsch G., Rülke A., Schäfer U., Sideris M., Rangelova E., Woodworth P., Hughes C. and Gerlach C., 2014. Height System Unification with GOCE, Summary and Final Report. Doc. No. GO-HSU-PL-0021, Issue 1, Rev. 0. Institute of Astronomical and Physical Geodesy, Technical University Munich, Munich, Germany.

    Google Scholar 

  • Saadat A., Safari A. and Needell D., 2018. IRG2016: RBF-based regional geoid model of Iran. Stud. Geophys. Geod., 62, 380–407, DOI: https://doi.org/10.1007/s11200-016-0679-x.

    Article  Google Scholar 

  • Sadiq M., Tscherning C.C. and Ahmad Z., 2009. An estimation of the height system bias parameter No using least squares collocation from observed gravity and GPS-levelling data. Stud. Geophys. Geod., 53, 375–388, DOI: https://doi.org/10.1007/s11200-009-0026-6.

    Article  Google Scholar 

  • Sansò F. and Sideris M.G., 2013. Geoid Determination — Theory and Methods. Lecture Notes in Earth System Sciences, 110, Springer-Verlag Berlin, Heidelberg, Germany, DOI: https://doi.org/10.1007/978-3-540-74700-0.

  • Shako R., Förste C., Abrikosov O., Bruinsma S., Marty J.C., Lemoine J.M., Flechtner F., Neumayer K. and Dahle C., 2013. EIGEN-6C: A high-resolution global gravity combination model including GOCE data. In: Flechtner F., Sneeuw N. and Schuh W.-D. (Eds), Observation of the System Earth from Space — CHAMP, GRACE, GOCE and Future Missions. 155–161, Springer-Verlag, Berlin, Heidelberg, Germany, DOI: https://doi.org/10.1007/978-3-642-32135-1_20.

    Google Scholar 

  • Sjöberg L.E. and Bagherbandi M., 2012. Quasigeoid-to-geoid determination by EGM08. Earth Sci. Inform., 5, 87–91, DOI: https://doi.org/10.1007/s12145-012-0098-7.

    Article  Google Scholar 

  • Tscherning C.C., 2015. Least-squares collocation. In: Grafarend E. (Ed.), Encyclopedia of Geodesy. Springer, Cham, Switzerland, DOI: https://doi.org/10.1007/978-3-319-02370-0_51-1.

    Google Scholar 

  • Tscherning C.C. and Rapp R., 1974. Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical implied by Anomaly Degree Variance Models. Report No. 208 Department of Geodetic Science, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Tscherning C.C., Forsberg R. and Knudsen P., 1992. The GRAVSOFT package for geoid determination. Proceedings of the 1st Continental Workshop on the Geoid in Europe, Prague. Research Institute of Geodesy, Topography and Cartography, Prague, Czech Republic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabah Ramouz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramouz, S., Afrasteh, Y., Reguzzoni, M. et al. IRG2018: A regional geoid model in Iran using Least Squares Collocation. Stud Geophys Geod 63, 191–214 (2019). https://doi.org/10.1007/s11200-018-0116-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-0116-4

Keywords

Navigation