Skip to main content
Log in

Towards Improved Probabilistic Seismic Hazard Assessment for Bangladesh

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study aims to build on the existing knowledge and improve the overall PSHA results by modifying source, path and site characteristics for Bangladesh. Firstly, six potential seismotectonic zones have been re-defined based on the recent study of Wang et al. (J Geophys Res Solid Earth 119:3576–3822, 2014) and Nath and Thingbaijam (J Seismol 15(2):295–315, 2011), and the updated earthquake catalogue has been declustered using two methods. Important source parameters, such as recurrence b-values and maximum magnitudes, have been determined using the Maximum Likelihood and cumulative moment methods, respectively, and their uncertainties have been addressed using a logic-tree approach. Secondly, based on literature review and studies in neighboring countries, suitable GMPEs have been selected for the seismic zones and the uncertainties have been addressed using a logic tree approach. A significant novelty of the study lies in the consideration of the site effects by integrating Vs30 values throughout the country. The ground motions—PGA and SA (at 0.2, 1.0 and 2.0 s) are computed using GEM’s OpenQuake and presented in form of hazard maps for 2% and 10% probabilities of exceedance in 50 years as well as mean hazard curves and uniform hazard spectra. Disaggregation for capital city Dhaka has also been carried out to show the hazard contributions of magnitude–distance pairs. The spatial distribution of PGA and SA are found remarkably higher than previous findings, likely due to differences in parameters and uncertainties. The results show a marked increase (by almost 20%) in the observed ground motions with respect to those carried out previously by uniformly characterizing the whole country as a firm rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: https://earthexplorer.usgs.gov/. Adopted from Wang et al. (2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abrahamson, N. A., & Silva, W. (1997). Empirical response spectral attenuation relations for shallow crustal earthquakes.

  • Abrahamson, N., & Silva, W. (2008). Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra,24(1), 67–97. https://doi.org/10.1193/1.2924360.

    Article  Google Scholar 

  • ADPC and OYO. (2009). Time-Predictable fault Modeling of Bangladesh. Bangladesh: CDMP II, Ministry of Disaster Management and Relief. https://doi.org/10.1007/s13398-014-0173-7.2.

    Book  Google Scholar 

  • Aki, K. (1965). Maximum Likelihood Estimate of b in the formula log N = a - b M and its Confidence Limits. Bulletin of the Earthquake Research Institute,65, 237–239.

    Google Scholar 

  • Akkar, S., & Bommer, J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean Region, and the Middle East extended-source crustal earthquake scenarios. https://doi.org/10.1785/gssrl.81.2.195.

  • Al-hussaini, T. M., & Al-noman, M. N. (2010). Probabilistic estimates of PGA and spectral acceleration in Bangladesh.

  • Al-hussaini, T. M., Al-noman, M. N., & Chowdhury, I. N. (2015) Seismic hazard assessment for Bangladesh—old and new perspectives.

  • Ali, M. H., & Choudhury, J. R. (1994). Seismic zoning of Bangladesh. In International seminar on recent developments in earthquake disaster mitigation, Dhaka. https://doi.org/10.1023/B:VISI.0000022288.19776.77.

  • Ambraseys, N. N. (2004). Three little known early earthquakes in India. Current Science,86(4), 506–508.

    Google Scholar 

  • Ansary, M. A., & Sharfuddin, (2002). Proposal for a new seismic zoning map for Bangladesh. Journal of Civil Engineering, Institution of Engineers Bangladesh,30(2), 77–89.

    Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (1995). Ground-motion relations for eastern north America. Bulletin of the Seismological Society of America,85(1), 17–30. https://doi.org/10.1785/0120050245.

    Article  Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America,93(4), 1703–1729. https://doi.org/10.1785/0120020156.

    Article  Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (2006). Earthquake ground-motion prediction equations for eastern North America. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120050245.

    Article  Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (2011). Modifications to existing ground-motion prediction equations in light of new data. Bulletin of the Seismological Society of America,101(3), 1121–1135. https://doi.org/10.1785/0120100270.

    Article  Google Scholar 

  • Avouac, J.-P. (2015). Mountain building: From earthquakes to geologic deformation, treatise on geophysics. Oxford: Elsevier B.V. https://doi.org/10.1016/B978-0-444-53802-4.00120-2.

    Book  Google Scholar 

  • Bangladesh National Building Code. (2015). Housing and Building Research Institute.

  • Bender, B. (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of the Seismological Society of America.

  • Bilham, R. (2004). Historical studies of earthquakes in India. Annals of Geophysics,47, 1–26.

    Article  Google Scholar 

  • Bommer, J. J., & Abrahamson, N. A. (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120060043.

    Article  Google Scholar 

  • Brandt, M. B. C., & Saunders, I. (2011). New regional moment tensors in South Africa. Seismological Research Letters,82(1), 69–80. https://doi.org/10.1785/gssrl.82.1.69.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra,24(1), 139–171. https://doi.org/10.1193/1.2857546.

    Article  Google Scholar 

  • Chapman, M. C. (1995). A probabilistic approach to ground-motion selection for engineering design. Bulletin of the Seismological Society of America.

  • Chiou, B. S. J., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra,24(1), 173–215. https://doi.org/10.1193/072813EQS219M.

    Article  Google Scholar 

  • Chiou, B.J.S., & Youngs, R. (2014). Update of the chiou and youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra,30(3), 1117–1153.

    Article  Google Scholar 

  • Comprehensive Disaster Management Programme (CDMP). (2012). Earthquake risk and damage assessment and subsequent development of scenario-based contingency planning for Rangpur, Dinajpur, Mymensingh, Tangail, Bogra and Rajshahi Municipalities/City Corporations and Detailed Building Inventory of the Said Towns Including Dhaka and Chittagong City Corporation.

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America,58(5), 1583–1606. https://doi.org/10.1016/0167-6105(83)90143-5.

    Article  Google Scholar 

  • Douglas J., Cotton F., Abrahamson N.A., Akkar S., Boore D.M., & Alessandro D.C. (2013). Pre-selection of ground motion prediction equations. Global earthquake model. Version 1.0.

  • Garnder, J. K., & Knopoff, L. (1974). Bulletin of the seismological Society of America. Bulletin of the Seismological Society of America,64(5), 1271–1302. https://doi.org/10.1785/0120160029.

    Article  Google Scholar 

  • Geological Survey of Bangladesh (GSB). (1979). Final report by the Committee of Experts on Earthquake Hazard Minimization.

  • Ghosh, B. et al. (2012). Seismic hazard assessment in India. In 15th world conference on earthquake engineering. http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2107.pdf.

  • Gregor, N., et al. (2014). Comparison of NGA-West2 GMPEs. Earthquake Spectra,30(3), 1179–1197. https://doi.org/10.1193/070113EQS186M.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America,34, 185–188.

    Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research B Solid Earth,19, 2348–2350. https://doi.org/10.1029/jb084ib05p02348.

    Article  Google Scholar 

  • Heaton, T. H., & Tajima, F. (1986). Estimating ground motions using recorded accelerograms. Surveys in Geophysics,8, 25–83.

    Article  Google Scholar 

  • Islam, M. S. et al. (2010). Attenuation of earthquake intensity in Bangladesh. In Proceedings, 3rd International Earthquake Symposium, Bangladesh, Dhaka, March 5–6, 2010.

  • Joyner, W. B., & Boore, D. M. (1981). Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, california, earthquake. Bulletin of the Seismological Society of America,71(6), 2011–2038.

    Google Scholar 

  • Kaklamanos, J., Baise, L. G., & Boore, D. M. (2011). Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra,27(4), 1219–1235. https://doi.org/10.1193/1.3650372.

    Article  Google Scholar 

  • Lin, P., & Lee, C. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in Northeastern Taiwan. Bulletin of the Seismological Society of America,98(1), 220–240. https://doi.org/10.1785/0120060002.

    Article  Google Scholar 

  • Makropoulos, K. C., & Burton, P. W. (1983). ‘Seismic risk of circum-pacific earthquakes I. Strain energy release. Pure and Applied Geophysics. https://doi.org/10.1007/BF02590137.

    Article  Google Scholar 

  • Musson, R. M. W. (1999). Probabilistic seismic hazard maps for the north Balkan region. Annals of Geophysics. https://doi.org/10.4401/ag-3772.

    Article  Google Scholar 

  • Nath, S. K. (2012). Ground-motion predictions in Shillong region, northeast India Ground-motion predictions in Shillong region, northeast India’. Journal of Seismology. https://doi.org/10.1007/s10950-012-9285-8.

    Article  Google Scholar 

  • Nath, S. K., & Thingbaijam, K. K. S. (2011). Peak ground motion predictions in India: An appraisal for rock sites. Journal of Seismology,15(2), 295–315. https://doi.org/10.1007/s10950-010-9224-5.

    Article  Google Scholar 

  • Nath, S. K., & Thingbaijam, K. K. S. (2012). Probabilistic Seismic Hazard Assessment of India. Seismological Research Letters,83(1), 135–149. https://doi.org/10.1785/gssrl.83.1.135.

    Article  Google Scholar 

  • Noor, M. A., Yasin, M. , & Ansary, M. A. (2005) Seismic hazard analysis of Bangladesh. In First Bangladesh earthquake symposium. Dhaka.

  • Ordaz, M., et al. (2013). CRISIS2008: A flexible tool to perform probabilistic seismic hazard assessment. Seismological Research Letters. https://doi.org/10.1785/0220120067.

    Article  Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting MSand mbto moment magnitude. Journal of Seismology,10(2), 225–236. https://doi.org/10.1007/s10950-006-9012-4.

    Article  Google Scholar 

  • Silva, V., et al. (2014). Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Natural Hazards,72(3), 1409–1427. https://doi.org/10.1007/s11069-013-0618-x.

    Article  Google Scholar 

  • Sipkin, S. A. (2003). A correlation to body-wave magnitude mb based on moment magnitude Mw. Seismological Research Letters,74(6), 739–742.

    Article  Google Scholar 

  • Steckler, M. S., et al. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience,9(8), 615–618. https://doi.org/10.1038/ngeo2760.

    Article  Google Scholar 

  • Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proceedings of the 1st international conference on microzonazion, Seattle, Vol. 2, (July), pp. 897–910.

  • Strasser, F. O., Arango, M. C., & Bommer, J. J. (2010). Scaling of the source dimensions of interface and Intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters,81(6), 941–950. https://doi.org/10.1785/gssrl.81.6.941.

    Article  Google Scholar 

  • Tavakoli, B., & Pezeshk, S. (2005). Empirical-stochastic ground motion prediction for Eastern North America. Bulletin of the Seismological Society of America,95, 2283–2296.

    Article  Google Scholar 

  • U.S. Geological Survey. (2018). USGS. https://earthquake.usgs.gov/earthquakes/search/. Accessed 13 June 2018.

  • Uhrhammer, R. (1986). Characteristics of northern and central California seismicity. In: Earthquake Notes 57.1, page 21 (cited on pages 22, 23).

  • Urban Development Directorate (UDD). (2018). Geological study and seismic hazard assessment for the preparation of the development plan for Mirsharai and Kuakata Upazilla.

  • Wang, Y. (2014). Active tectonic and earthquake Myanmar region. Journal of Geophysical Research Solid Earth,20, 3576–3822. https://doi.org/10.1002/2013jb010762.received.

    Article  Google Scholar 

  • Wang, Y., et al. (2014). Active tectonic and earthquake Myanmar region. Journal of Geophysical Research Solid Earth,119, 3576–3822. https://doi.org/10.1002/2013JB010762.

    Article  Google Scholar 

  • Weatherill, G. A. (2014). OpenQuake hazard modeller’ s toolkit-user guide.

  • Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes.pdf. Seismological Research Letters,68(1), 58–73.

    Article  Google Scholar 

  • Yu, W., & Sieh, K. (2013). Active tectonic features that pose a seismic threat to Bangladesh, A report published by Comprehensive Disaster Management Programme (CDMP). Dhaka.

  • Zhao, J. X., et al. (2016). Ground-motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America,106(4), 1–17. https://doi.org/10.1785/0120150056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewan Mohammad Enamul Haque.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

figure a
figure b
figure c
figure d
figure e
figure f

Appendix 2

figure g
figure h

Appendix 3

Average shear wave (Vs30) values at different site locations

Long

Lat

Vs30

Long

Lat

Vs30

89.37351

24.85611

263

90.50646

24.70862

188

89.37821

24.85244

223

90.48071

24.66993

185

89.38115

24.84863

224

90.07743

23.63394

156

89.36895

24.86125

243

90.12161

23.61735

148

89.13993

24.85871

264

90.20647

23.62696

145

89.37736

24.82160

239

90.16812

23.34572

160

89.36439

24.84216

254

90.87897

23.98158

153

89.36459

24.85270

279

90.82998

24.03064

198

89.38171

24.83721

236

92.08725

21.44789

201

89.36023

24.86636

232

92.11755

21.37114

253

89.35992

24.88673

242

92.11636

21.46377

181

89.36504

24.83427

238

92.06448

22.53408

153

89.38101

24.82901

279

89.52582

25.16704

164

89.35303

24.82963

215

89.58458

25.10831

152

88.65151

25.64451

232

90.16812

23.34572

160

88.62206

25.64237

188

89.53075

24.87858

165

88.62054

25.62871

221

89.57335

24.89326

169

88.62655

25.64922

219

89.55868

24.98045

155

88.62847

25.61205

238

89.46803

24.99597

185

88.63723

25.63992

256

90.42106

24.74833

185

88.64479

25.66449

314

90.42473

24.74163

125

88.65336

24.35568

247

90.43113

24.73216

154

88.62439

24.36004

215

90.43497

24.71909

255

88.61966

24.40818

159

90.42564

24.71931

143

88.58221

24.37623

244

90.36881

24.77575

181

88.56844

24.39346

201

90.37660

24.77430

173

88.59560

24.36341

181

90.48681

24.73591

214

89.89567

24.24692

209

90.38451

24.76567

180

89.92429

24.26897

184

90.40125

24.74600

198

89.92853

24.22441

215

90.36217

23.88536

200

89.89463

24.25761

236

90.48583

23.82778

127

89.90158

24.23534

192

90.34372

23.76539

174

89.90672

24.24355

169

90.40722

23.80056

246

90.60028

24.68912

179

90.39028

23.71028

175

90.50244

23.70550

223

91.54239

22.83615

199

91.49581

22.89871

179

91.50001

22.85378

183

90.50244

23.70550

223

91.54239

22.83615

199

91.75678

22.39136

195

91.51746

22.81188

209

91.85628

22.42250

125

91.48335

22.82661

183

91.81572

22.38317

420

91.59575

22.7794

269

91.85406

22.33100

160

91.53249

22.78397

193

91.82386

22.25653

199

91.53351

22.74951

180

91.79664

22.23794

156

91.58926

22.74442

178

91.94622

24.91925

256

91.62035

22.7002

192

91.92872

24.86008

172

91.60059

22.67191

182

91.86442

24.91831

341

91.5464

22.89774

235

91.85564

24.86856

140

90.61066

24.63043

179

91.88667

24.91022

212

90.50244

23.70550

223

91.79564

24.90081

157

90.122042

21.822277

159

88.73273

23.78366

241

90.405833

21.908114

173

88.82253

23.79642

203

90.083894

21.98446

148

88.76714

23.79047

229

90.22015

21.98503

149

88.82855

23.81640

173

90.418347

22.025535

154

88.73260

23.82609

193

89.927283

22.067503

154

88.74858

23.81835

227

90.051524

22.044112

158

88.81804

23.82508

173

90.186166

22.059275

137

88.79932

23.82355

201

90.408955

22.168115

162

88.71098

23.83142

216

90.233098

22.141493

165

88.76802

23.84709

182

90.31988

22.05873

134

88.65115

23.85518

228

90.015177

22.177767

134

88.85149

23.86646

202

90.122003

22.155764

147

88.78759

23.87305

178

90.322332

22.247763

128

88.67374

23.87088

233

90.45629

22.22561

139

88.80393

23.88907

217

90.275292

21.994316

169

88.76061

23.90297

192

90.44303

24.71977

181

88.71700

23.89365

237

90.39331

24.75675

185

88.85344

23.91934

218

88.721173

24.306128

220

88.75707

23.94155

204

88.728859

24.356102

199

88.79390

23.95878

194

88.677473

24.415114

216

88.77811

23.82896

234

88.606420

24.362110

199

88.73162

23.85178

224

88.684705

24.346747

217

88.72510

23.89705

269

88.639558

24.381613

227

88.85581

23.91220

248

88.607687

24.396923

226

88.80393

23.88907

190

88.587194

24.408673

215

91.55832

22.93579

333

88.591944

24.380000

209

88.635400

24.405100

218

88.643311

24.457038

219

88.612640

24.467003

207

88.632226

24.436689

190

88.569700

24.370300

203

88.605666

24.40056

220

88.558712

24.442587

181

88.598998

24.378941

197

88.552316

24.391279

194

88.597518

24.451448

219

88.482410

24.370630

262

88.593071

24.400585

209

88.749009

24.342104

229

88.587622

24.366168

224

88.727314

24.345881

183

88.621069

24.359928

199

88.710272

24.331093

197

88.568198

24.414109

209

88.697216

24.408906

197

88.564457

24.391927

239

88.665829

24.382933

191

88.540286

24.387145

233

88.669956

24.422851

204

88.497604

24.372732

223

88.6478441

24.3635879

189

88.610092

24.344658

189

88.697382

24.380363

206

88.6327574

24.3661643

225

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, D.M.E., Khan, N.W., Selim, M. et al. Towards Improved Probabilistic Seismic Hazard Assessment for Bangladesh. Pure Appl. Geophys. 177, 3089–3118 (2020). https://doi.org/10.1007/s00024-019-02393-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02393-z

Keywords

Navigation