Skip to main content
Log in

Eurasia–Africa Plate Boundary Affected by a South Atlantic Asthenospheric Channel in the Gulf of Cadiz Region?

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Gulf of Cadiz has been affected by a long and complex geodynamic evolution. The lithospheric structure is poorly understood in this region, and it also shows a diffuse seismicity, spanning over a broad area. The Canary Archipelago has been extensively studied. Nevertheless, there are fundamental topics that are still under debate. No studies have addressed or suggested the possibility of a plausible geodynamic connection between both remarkable locations. In this study we integrate total tectonic subsidence (TTS), Curie point depth (CPD), Bouguer gravity anomaly, and seismic information. TTS shows the existence of a basement bulge in the area of the Canary Archipelago that extends to the north, and in the area of Madeira Island, which extends in a more subtle way to the north, too. Likewise, the CPD reaches the shallowest values in the same location at the Canary Archipelago. These two aspects suggest a cause-effect relationship between TTS and CPD at this specific area. Gravity data and CPD show a linear feature, which links the NW of the Canary Archipelago and the Gulf of Cadiz. The data we manage in this work show remarkable clues as: (a) the absence of a similar signal in the TTS, (b) the fact that CPD it is rather constant along this track, (c) CPD amplitude also almost doubles the values obtained on Canary Archipelago, and (d) the existence of a clear correlation between seismogenic depths and CPD, which points to the existence of a correlation between seismicity and the thermal architecture of the lithosphere. All of these evidences support the presence of a lithospheric thinning between Canary Islands and Gulf of Cádiz area, and in turn, the presence of an asthenospheric channel which feeds and alter locally the Eurasia–Africa Plate Boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Louden et al. (2004)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note that water depth is negative, while sediment thickness and isostatic correction are positives.

References

  • Alvarez, W. (1982). Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics. Journal of Geophysical Research,87(B8), 6697–6710.

    Article  Google Scholar 

  • Anguita, F., & Hernán, F. (2000). The Canary Islands origin: a unifying model. Journal of Volcanology and Geothermal Research,103(1–4), 1–26.

    Article  Google Scholar 

  • Arnaiz-Rodriguez, M., & Orihuela, N. (2013). Curie point depth in Venezuela and Eastern Caribbean. Tectonophysics,590(2013), 38–51.

    Article  Google Scholar 

  • Arroucau, P., Custódio, S., Civiero, C., Dias, N. A., & Silveira, G. (2017). PRISM3D: a preliminary 3D reference seismic model of the crust and upper mantle beneath Iberia. General Assembly Conference Abstracts,19, EGU2017-16801.

    Google Scholar 

  • Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., et al. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy,32(4), 355–371.

    Article  Google Scholar 

  • Berger, W. H., & Rad, U. (1972). Cretaceous and Cenozoic sediments from the Atlantic Ocean. In D. E. Hayes & A. C. Pimm (Eds.), Initial reports, deep sea drilling project (Vol. 14, pp. 787–954). Washington: U.S. Government Pinting Office.

    Google Scholar 

  • Canales, J. P., & Dañobeitia, J. (1998). The Canary Islands swell: a coherence analysis of bathymetry and gravity. Geophysical Journal International,132, 479–488.

    Article  Google Scholar 

  • Carbó, A., Muñoz-Martín, A., Llanes, P., Alvarez, J., & EEZ Working Group. (2003). Gravity analysis offshore the Canary Islands from a systematic survey. Marine Geophysical Researches,24(1–2), 113–127.

    Article  Google Scholar 

  • Civiero, C., Custódio, S., Rawlinson, N., Strak, V., Silveira, G., Arroucau, P., et al. (2019). Thermal nature of mantle upwellings below the Ibero‐Western maghreb region inferred from teleseismic tomography. of Geophysical Research: Solid Earth. https://doi.org/10.1029/2018JB016531.

    Article  Google Scholar 

  • Civiero, C., Strak, V., Custódio, S., Silveira, G., Rawlinson, N., Arroucau, P., et al. (2018). A common deep source for upper-mantle upwellings below the Ibero-western Maghreb region from teleseismic P-wave travel-time tomography. Earth and Planetary Science Letters,499, 157–172.

    Article  Google Scholar 

  • Cunha, T. (2008). Gravity anomalies, Flexure and the Thermo-Mechanical evolution of the West Iberia Margin and its conjugate of Newfounland. PhD. Thesis. Oxford University.

  • de Vicente, G., Cloetingh, S., Muñoz-Martín, A., Olaiz, A., Stich, D., Vegas, R., et al. (2008). Inversion of moment tensor focal mechanism for active stresses around the microcontinent Iberia: Tectonic implications. Tectonics,27, TC1009. https://doi.org/10.1029/2006tc002093.

    Article  Google Scholar 

  • Doser, D. I., & Kanamori, H. (1986). Depth of seismicity in the Imperial Valley region (1977–1983) and its relationship to heat flow, crustal structure and the October 15, 1979, earthquake. Journal of Geophysical Research,91(B1), 675–688.

    Article  Google Scholar 

  • Druet, M., Muñoz-Martín, A., Granja-Bruña, J. L., Carbó-Gorosabel, A., Acosta, J., Llanes, P., et al. (2018). Crustal structure and continent-ocean boundary along the Galicia continental margin (NW Iberia): Insights from combined gravity and seismic interpretation. Tectonics. https://doi.org/10.1029/2017TC004903.

    Article  Google Scholar 

  • Druet, M., Muñoz-Martín, A., Granja-Bruña, J. L., Carbó-Gorosabel, A., Llanes, P., Catalán, M., et al. (2019). Bouguer anomalies of the NW Iberian continental margin and the adjacent abyssal plains. Journal of Maps,15(2), 635–641.

    Article  Google Scholar 

  • Fernàndez, M., Marzan, I., & Torne, M. (2004). Lithospheric transition from the Variscan Iberian Massif to the Jurassic oceanic crust of the Central Atlantic. Tectonophysics,386(1–2), 97–115.

    Article  Google Scholar 

  • Geldmacher, J., van den Bogaard, P., Hoernle, K., & Schmincke, H.-U. (2000). The 40Ar/39Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic). Geochemistry, Geophysics, Geosystems,1, 1008. https://doi.org/10.1029/1999GC000018.

    Article  Google Scholar 

  • Granja-Bruña, J. L., Muñoz-Martín, A., Ten-Brink, U. S., Carbó-Gorosabel, A., Llanes Estrada, P., Martín Davila, J., et al. (2010). Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean). Marine Geophysical Researches,31(4), 263–283.

    Article  Google Scholar 

  • Groupe Galicie (1979). The continental margin of Galicia and Portugal, acoustic stratigraphy, dredge stratigraphy and structural evolution. In Ryan, W. B. F., & Sibuet, J. C. (editors), Procedings of the deep sea drilling project, Leg 47, US Government Printing Office, Washington, DC, pp 633–662.

  • Heine, C., Müller, R. D., Steinberger, B., & Torsvik, T. H. (2008). Subsidence in intracontinental basins due to dynamic topography. Physics of the earth and Planetary Interiors. https://doi.org/10.1016/j.pepi.2008.05.008.

    Article  Google Scholar 

  • Henning, A. T., Sawyer, D. S., & Templeton, D. C. (2004). Exhumed upper mantle within the ocean-continent transition on the northern West Iberia margin: Evidence from prestack depth migration and total tectonic subsidence analyses. Journal of Geophysical Research. https://doi.org/10.1029/2003JB002526.

    Article  Google Scholar 

  • Hoernle, K., Zhang, Y.-S., & Graham, D. (1995). Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature,374, 34–39.

    Article  Google Scholar 

  • Holik, J. S., & Rabinowitz, P. D. (1991). Effects of Canary hotspot volcanism on structure of oceanic crust off Morocco. Journal of Geophysical Research. https://doi.org/10.1029/2003JB002526.

    Article  Google Scholar 

  • Jiménez-Munt, I., Fernàndez, M., Torné, M., & Bird, P. (2001). The transition from linear to diffuse plate boundary in the Azores–Gibraltar region: results from a thin-sheet model. Earth and Planetary Science Letters,192(2), 175–189.

    Article  Google Scholar 

  • Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0—A 1-degree global model of earth’s crust. General Assembly Conference Abstracts,15, Abstract EGU2013-2658.

    Google Scholar 

  • Lefort, J. P. (1989). Basement correlation across the North Atlantic. New York: Springer.

    Book  Google Scholar 

  • Li, C.-F., Lu, Y., & Wang, J. (2017). A global reference model of Curie-point depths based on EMAG2. Nature Publishing Group. https://doi.org/10.1038/srep45129.

    Article  Google Scholar 

  • Louden, K. E., Tucholke, B. E., & Oakey, G. N. (2004). Regional anomalies of sediment thickness, basement depth and isostatic crustal thickness in the North Atlantic Ocean. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2004.05.002.

    Article  Google Scholar 

  • Martos, Y. M., Catalán, M., & Galindo-Zaldívar, J. (2019). Curie depth, heat flux and thermal subsidence studies reveal the Pacific mantle outflow through the Scotia Sea. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2019JB017677.

    Article  Google Scholar 

  • Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D., Eagles, G., et al. (2017). Heat flux distribution of Antarctica unveiled. Geophysical Research Letters,44(22), 11–417.

    Article  Google Scholar 

  • Martos, Y. M., Galindo-Zaldívar, J., Catalán, M., Bohoyo, F., & Maldonado, A. (2014). Asthenospheric Pacific-Atlantic flow barriers and the West Scotia Ridge extinction. Geophysical Research Letters. https://doi.org/10.1002/2013GL058885.

    Article  Google Scholar 

  • Martos, Y. M., Jordan, T. A., Catalán, M., Jordan, T. M., Bamber, J. L., & Vaughan, D. G. (2018). Geothermal heat flux reveals the Iceland hotspot track underneath Greenland. Geophysical Research Letters,45(16), 8214–8222.

    Article  Google Scholar 

  • Mauffret, A., Mougenot, D., Miles, P. R., & Malod, J. A. (1989). Results from multi-channel reflection profiling of the Tagus Abyssal Plain (Portugal)-Comparison with the Canadian Margin. In Tankard, A. J., & Balkwill, H. R. (editors), Extensional Tectonics and Stratigraphy of the North Atlantic Margins. American Association of Petroleum Geologist Memoir, 46, 379-393.

  • Morgan, W. J. (1981). Hotspot tracks and the opening of the Atlantic and Indian Oceans. In C. Emiliani (Ed.), The sea: Oceanic lithosphere (Vol. 7, pp. 443–487). New York: Wiley.

    Google Scholar 

  • Muñoz-Martín, A., de Vicente, G., Fernández-Lozano, J., Cloetingh, S., Willingshofer, E., Sokoutis, D., et al. (2010). Spectral analysis of the gravity and elevation along the western Africa-Eurasia plate tectonic limit: Continental versus oceanic lithospheric folding signals. Tectonophysics,495(3–4), 298–314.

    Article  Google Scholar 

  • Nettleton, L. L. (1976). Gravity and magnetic in oil exploration. New York: Mac Graw-Hill.

    Google Scholar 

  • Pinheiro, L. M., Whitmarsh, R., & Miles, P. (1992). Ocean-continent boundary off the western continental margin of Iberia-11. Crustal structure in the Tagus Abyssal Plain. Geophysical Journal International,109, 106–124.

    Article  Google Scholar 

  • Roeser, H. A., Steiner, C., Schreckenberger, B., & Block, M. (2002). Structural development of the Jurassic Magnetic Quiet Zone off Morocco and identification of Middle Jurassic magnetic lineations. Journal of Geophysical Research. https://doi.org/10.1029/2000JB000094.

    Article  Google Scholar 

  • Roest, W. R., Danobeitia, J. J., Verhoef, J., & Collette, B. J. (1992). Magnetic anomalies in the canary basin and the Mesozoic evolution of the central North Atlantic. Marine Geophysical Researches,14(1), 1–24.

    Article  Google Scholar 

  • Rovere, M., Ranero, C., Sartori, R., & Torelli, L. (2004). Seismic images and magnetic signature of the Late Jurassic to Early Cretaceous Africa-Eurasia plate boundary off SW Iberia. Geophysical Journal International,158, 554–568.

    Article  Google Scholar 

  • Sartori, R., Torelli, L., Zitellini, N., Peis, D., & Lodolo, E. (1994). Eastern segment of the Azores–Gibraltar line (central-eastern Atlantic): an oceanic plate boundary with diffuse compressional deformation. Geology,22, 555–558.

    Article  Google Scholar 

  • Sawyer, D. S. (1985). Total tectonic subsidence: A parameter for distinguishing crust type at the US Atlantic continental margin. Journal of Geophysical Research,90(B9), 7751–7769.

    Article  Google Scholar 

  • Sibson, R. H. (1982). Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bulletin of the Seismological Society of America,72(1), 151–163.

    Google Scholar 

  • Simmons, N. A., Myers, S. C., Johannesson, G., & Matzel, E. (2012). LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2012JB009525.

    Article  Google Scholar 

  • Smith, W. H. F., & Sandwell, D. T. (1997). Global Sea floor topography from satellite altimetry and Ship Depth soundings. Science,277, 1956–1962.

    Article  Google Scholar 

  • Srivastava, S., Sibuet, J., Cande, S., Roest, W., & Reid, I. D. (2000). Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth and Planetary Science Letters,182, 61–76.

    Article  Google Scholar 

  • Straume, E. O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., et al. (2019). GlobSed: updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2018GC008115.

    Article  Google Scholar 

  • Sykes, T. J. S. (1996). A correction for sediment load upon the ocean floor: Uniform versus varying sediment density estimations—implications for isostatic correction. Marine Geology,133(1), 35–49.

    Article  Google Scholar 

  • Tanaka, A., & Ishikawa, Y. (2005). Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study. Physics of the Earth and Planetary Interiors. https://doi.org/10.1016/j.pepi.2005.04.011.

    Article  Google Scholar 

  • Tanaka, A., Okubo, Y., & Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics,306, 461–470.

    Article  Google Scholar 

  • Tucholke, B. E., & Ludwig, W. J. (1982). Structure and origin of the J Anomaly Ridge, western North Atlantic Ocean. Journal of Geophysical Research,87(B11), 9389–9407.

    Article  Google Scholar 

  • Tucholke, B.E., Sawyer, D.S., Sibuet, J.-C. (2007). Breakup of the Newfoundland-Iberia rift. In Karner, G.D., Manatschal, G. & Pinheiro, L.M. (editors) Imaging, mapping and modelling continental lithosphere extension and breakup. Geological Society, London, Special Publications, vol. 282, pp 9–46, http://dx.doi.org/10.1144/SP282.2.

  • Watts, A. B. (1994). Crustal structure, gravity anomalies and flexure of the lithosphere in the vicinity of the Canary Islands. Geophysical Journal International,119(2), 648–666.

    Article  Google Scholar 

  • Whitmarsh, R., & Miles, P. (1995). Models of the development of the West Iberia rifted continental margin at 40°30′ N deduced from surface and deep-tow magnetic anomalies. Journal of Geophysical Research,100(B3), 3789–3806.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been funded through project RTI2018-099615-B-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Catalán.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalán, M., Martos, Y.M. & Martín-Davila, J. Eurasia–Africa Plate Boundary Affected by a South Atlantic Asthenospheric Channel in the Gulf of Cadiz Region?. Pure Appl. Geophys. 177, 1725–1738 (2020). https://doi.org/10.1007/s00024-019-02380-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02380-4

Keywords

Navigation