Skip to main content

Advertisement

Log in

Habitat-partitioning improves regional distribution models in multi-habitat species: a case study with the European bilberry

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Modelling the spatial distribution of multi-habitat species is challenging since they show multi-dimensional environmental responses that may vary sharply through habitats. Hence, for these species, the achievement of realistic models useful in conservation planning may depend on the appropriate consideration of habitat information in model calibration. We aimed to evaluate the role of different types of habitat predictors, along with habitat-partitioning, to improve model inference, detect non-stationary responses across habitats and simulate the impact of sampling bias on spatial predictions. As a case study, we modelled the occurrence of the multi-habitat plant species bilberry (Vaccinium myrtillus) in the Cantabrian Mountains (NW Spain), where it represents a basic trophic resource for threatened brown bear and capercaillie. We used MaxEnt to compare a baseline model approach calibrated with topo-climatic variables against three alternative approaches using explicit habitat information based on vegetation maps and remote sensing data. For each approach, we ran non-partitioned (all habitats together) and habitat-partitioned models (one per habitat) and evaluated model performance, overfitting and extrapolation. The highest performance was for habitat-partitioned models including habitat predictors. The lowest overfitting was for the baseline non-partitioned model, at the cost of achieving the highest predicted fractional area. The extrapolation success of habitat-partitioned models was low, with the highest performance for the baseline approach. Our results highlight that multi-habitat species responses are non-stationary across habitats, with habitat-biased data resulting in weak spatial predictions. When modelling the distribution of multi-habitat species at regional scale, we recommend using habitat-partitioned models including habitat predictors, either vegetation maps or remote sensing data, to improve the realism of spatial outputs and its applicability in regional conservation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert T, Raspé O, Jacquemart AL (2004) Clonal diversity and genetic structure in Vaccinium myrtillus populations from different habitats. Belg J Bot 137:155–162

    Google Scholar 

  • Alcaraz-Segura D, Lomba A, Sousa-Silva R, Nieto-Lugilde D, Alves P, Georges D, Vicente JR, Honrado JP (2017) Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts. Int J Appl Earth Obs Geoin 57:86–92

    Google Scholar 

  • Álvarez-Martínez JM, Jiménez-Alfaro B, Barquín J, Ondiviela B, Recio M, Silió-Calzada A, Juanes JA (2018) Modelling the area of occupancy of habitat types with remote sensing. Methods Ecol Evol 9:580–593

    Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents in Venezuela. J Biogeogr 37:1378–1393

    Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157(2–3):101–118

    Google Scholar 

  • Anon (1992) Council Directive of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora (92/43/EEC). European Commission, Brussels

    Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberon J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819

    Google Scholar 

  • Blanco-Fontao B, Fernández-Gil A, Obeso JR, Quevedo M (2009) Diet and habitat selection in Cantabrian Capercaillie: ecological differentiation of a rear-edge population. J Ornithol 151:269–277

    Google Scholar 

  • Boakes EH, McGowan PJ, Fuller RA, Chang-Qing D, Clark NE, O’Connor K, Mace GM (2010) Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol 8:e1000385

    PubMed  PubMed Central  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77

    Google Scholar 

  • Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK (2002) Evaluating resource selection functions. Ecol Model 157:281–300

    Google Scholar 

  • Brambilla M, Saporetti F (2014) Modelling distribution of habitats required for different uses by the same species: implications for conservation at the regional scale. Biol Conserv 174:39–46

    Google Scholar 

  • Braunisch V, Bollmann K, Graf RF, Hirzel AH (2008) Living on the edge-modelling habitat suitability for species at the edge of their fundamental niche. Ecol Model 214:153–167

    Google Scholar 

  • Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448

    Google Scholar 

  • Carlson BZ, Randin CF, Boulangeat I, Lavergne S, Thuiller W, Choler P (2013) Working toward integrated models of alpine plant distribution. Alpine Bot 123:41–53

    Google Scholar 

  • Chapman DS, Purse BV (2011) Community versus single-species distribution models for British plants. J Biogeogr 38:1524–1535

    Google Scholar 

  • Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Model 210:478–486

    Google Scholar 

  • Chefaoui RM, Lobo JM, Hortal J (2011) Effects of species’ traits and data characteristics on distribution models of threatened invertebrates. Anim Biodivers Conserv 34:229–247

    Google Scholar 

  • Comte L, Grenouillet G (2013) Species distribution modelling and imperfect detection: comparing occupancy versus consensus methods. Divers Distrib 19:996–1007

    Google Scholar 

  • Coudun C, Gégout JC (2007) Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J Veg Sci 18:517–524

    Google Scholar 

  • Davies CH, Moss D, Hill MO (2004) EUNIS habitat classification. European Topic Centre on Nature Protection and Biodiversity, European Environment Agency

  • Dennis RL, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426

    Google Scholar 

  • Elisabetta B, Flavia G, Paolo F, Giorgio L, Attilio SG, Fiorella LS, Juri N (2013) Nutritional profile and productivity of bilberry (Vaccinium myrtillus L.) in different habitats of a protected area of the eastern Italian Alps. J Food Sci 78:673–678

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol 40:677–697

    Google Scholar 

  • Elith J, Burgman MA, Regan HM (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol Model 157:313–329

    Google Scholar 

  • ESRI (2018) ArcInfo desktop GIS

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Foody GM (2004) Spatial non-stationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecol Biogeogr 13:315–320

    Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499

    Google Scholar 

  • Franklin J (2009) Mapping species distributions. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin J, Woodcock CE, Warbington R (2000) Multi-attribute vegetation maps of forest service lands in California supporting resource management decisions. Photogramm Eng Remote Sens 66:1209–1218

    Google Scholar 

  • Frans VF, Augé AA, Edelhoff H, Erasmi S, Balkenhol N, Engler JO (2018) Quantifying apart what belongs together: a multi-state species distribution modelling framework for species using distinct habitats. Methods Ecol Evol 9:98–108

    Google Scholar 

  • García-Llamas P, Calvo L, Álvarez-Martínez JM, Suárez-Seoane S (2016) Using remote sensing products to classify landscape. A multi-spatial resolution approach. Int J Appl Earth Obs Geoinf 50:95–105

    Google Scholar 

  • García-Llamas P, Calvo L, De la Cruz M, Suárez-Seoane S (2018) Landscape heterogeneity as a surrogate of biodiversity in mountain systems: what is the most appropriate spatial analytical unit? Ecol Indic 85:285–294

    Google Scholar 

  • García-Llamas P, Rangel TF, Calvo L, Suárez-Seoane S (2019a) Linking species functional traits of terrestrial vertebrates and environmental filters: a case study in temperate mountain systems. PLoS ONE 14:e0211760

    PubMed  PubMed Central  Google Scholar 

  • García-Llamas P, Geijzendorffer IR, García-Nieto AP, Calvo L, Suárez-Seoane S, Cramer W (2019b) Impact of land cover change on ecosystem service supply in mountain systems: a case study in the Cantabrian Mountains (NW of Spain). Reg Environ Change 19:529–542

    Google Scholar 

  • Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating pylogenetic effects. Syst Zool 39:227–241

    Google Scholar 

  • Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol Conserv 116:195–203

    Google Scholar 

  • Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann NE (2006) Using niche-based models to improve the sampling of rare species. Conserv Biol 20:501–511

    PubMed  Google Scholar 

  • Guisan A et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    PubMed  PubMed Central  Google Scholar 

  • Guralnick RP, Hill AW, Lane M (2007) Towards a collaborative, global infrastructure for biodiversity assessment. Ecol Lett 1:663–672

    Google Scholar 

  • He KS et al (2015) Will remote sensing shape the next generation of species distribution models? Remote Sens Ecol Conserv 1:4–18

    Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sampling size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Google Scholar 

  • Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152

    Google Scholar 

  • Hortal J, Lobo JM, Jiménez-Valverde A (2007) Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conserv Biol 21:853–863

    PubMed  Google Scholar 

  • Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858

    Google Scholar 

  • Ikeda DH, Max TL, Allan GJ, Lau MK, Shuster SM, Whitham TG (2017) Genetically informed ecological niche models improve climate change predictions. Glob Change Biol 23:164–176

    Google Scholar 

  • Jiapaer G, Chen X, Bao A (2011) A comparison of methods for estimating fractional vegetation cover in arid regions. Agric For Meteorol 151:1698–1710

    Google Scholar 

  • Jiménez-Alfaro B et al (2018) Modelling the distribution and compositional variation of plant communities at the continental scale. Divers Distrib 24:978–990

    Google Scholar 

  • Kadmon R, Farber O, Danin A (2003) A systematic analysis of factors affecting the performance of climatic envelope models. Ecol Appl 13:853–867

    Google Scholar 

  • Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115:186–191

    Google Scholar 

  • Kramer-Schadt S et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Google Scholar 

  • Lahoz-Monfort JJ, Guillera-Arroita G, Wintle BA (2014) Imperfect detection impacts the performance of species distribution models. Glob Ecol Biogeogr 23:504–515

    Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Google Scholar 

  • Maiorano L, Chiaverini L, Falco M, Ciucci P (2019) Combining multi-state species distribution models, mortality estimates and landscape connectivity to model potential species distribution for endangered species in human dominated landscapes. Biol Conserv 237:19–27

    Google Scholar 

  • Marquínez J, Fernández Prieto JA, Álvarez MA (2002) Cartografía Temática Ambiental del Principado de Asturias. Escala 1:25,000. Gobierno del Principado de Asturias, Oviedo

    Google Scholar 

  • Martins EP (1996) Phylogenies, spatial autoregression, and the comparative method: a computer simulation test. Evolution 50:1750–1765

    PubMed  Google Scholar 

  • Menke SB, Holway DA, Fisher RN, Jetz W (2009) Characterizing and predicting species distributions across environments and scales: argentine ant occurrences in the eye of the beholder. Glob Ecol Biogeogr 18:50–63

    Google Scholar 

  • Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R (2015) A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J Sci Food Agric 95:776–785

    CAS  PubMed  Google Scholar 

  • Mitchell SC (2005) How useful is the concept of habitat? Oikos 110:634–638

    Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    CAS  PubMed  Google Scholar 

  • Morán-Ordóñez A, Suárez-Seoane S, Calvo L, Luis E (2011) Can predictive models be used as a spatially explicit support tool for managing cultural landscapes? Appl Geogr 31:839–848

    Google Scholar 

  • Morán-Ordóñez A, Suárez-Seoane S, Elith J, Calvo L, Luis E (2012) Satellite surface reflectance improves habitat distribution mapping. Divers Distrib 18:588–602

    Google Scholar 

  • Naves J, Fernández-Gil A, Rodríguez C, Delibes M (2006) Brown bear food habits at the border of its range: a long-term study. J Mammal 87:899–908

    Google Scholar 

  • Naves J, Ordiz A, Fernández-Gil A, Penteriani V, Delgado MM, López-Bao JV, Revilla E, Delibes M (2018) Patterns of brown bear damages on apiaries and management recommendations in the Cantabrian Mountains, Spain. PLoS ONE 13:e0206733

    PubMed  PubMed Central  Google Scholar 

  • Ninyerola M, Roure JM, Fernández XP (2005) Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica. Universitat Autònoma de Barcelona, Bellaterra

    Google Scholar 

  • Osborne PE, Suárez-Seoane S (2002) Should data be partitioned spatially before building large-scale distribution models? Ecol Model 157:249–259

    Google Scholar 

  • Osborne PE, Foody GM, Suárez-Seoane S (2007) Non-stationarity and local approaches to modelling the distributions of wildlife. Divers Distrib 13:313–323

    Google Scholar 

  • Pato J, Obeso JR (2012) Growth and reproductive performance in bilberry (Vaccinium myrtillus) along an elevation gradient. Ecoscience 19:59–68

    Google Scholar 

  • Pato J, Obeso JR, Ploquin EF, Jiménez-Alfaro B (2016) Experimental evidence from Cantabrian mountain heathlands suggests new recommendations for management of Vaccinium myrtillus L. Plant Ecol Divers 9:199–206

    Google Scholar 

  • Penteriani V, Zarzo-Arias A, Novo-Fernández A, Bombieri G, López-Sánchez CA (2019) Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Glob Change Biol 25:1133–1151

    Google Scholar 

  • Peterson AT, Cohoon KP (1999) Sensitivity of distributional prediction algorithms to geographic data completeness. Ecol Model 117:159–164

    Google Scholar 

  • Peterson AT et al (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    PubMed  Google Scholar 

  • R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643

    Google Scholar 

  • Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Google Scholar 

  • Rodríguez AE, Obeso JR (2000) Diet of the Cantabrian capercaillie: geographic variation and energetic content. Ardeola 47:77–83

    Google Scholar 

  • Rodríguez C, Naves J, Fernández-Gil A, Obeso JR, Delibes M (2007) Long-term trends in food habits of a relict brown bear population in northern Spain: the influence of climate and local fact. Envi Conserv 34:36–44

    Google Scholar 

  • Rodwell JS, Schaminée JHJ, Mucina L, Pignatti S, Dring J, Moss D (2002) The diversity of European vegetation: an overview of phytosociological alliances and their relationships to EUNIS habitats. NRCANF, Wageningen

    Google Scholar 

  • Segura A, Castaño-Santamaría J, Laiolo P, Obeso JR (2014) Divergent responses of flagship, keystone and resource-limited bio-indicators to forest structure. Ecol Res 29:925–936

    Google Scholar 

  • Soberón J, Peterson T (2004) Biodiversity informatics: managing and applying primary biodiversity data. Philos Trans R Soc Lond B Biol Sci 359:689–698

    PubMed  PubMed Central  Google Scholar 

  • SPSS v.21 (2012) IBM SPSS statistics version 21. Int. Business Machines Corp., Bangalore

    Google Scholar 

  • Suárez-Seoane S, de la Morena ELG, Prieto MBM, Osborne PE, de Juana E (2008) Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution. Ecol Model 219:17–29

    Google Scholar 

  • Suárez-Seoane S, Virgós E, Terroba O, Pardavila X, Barea-Azcón JM (2014) Scaling of species distribution models across spatial resolutions and extents along a biogeographic gradient. The case of Talpa occidentalis. Ecography 37:279–292

    Google Scholar 

  • Suárez-Seoane S, Álvarez-Martínez JM, Wintle BA, Palacín C, Alonso JC (2017) Modelling the spatial variation of vital rates: an evaluation of the strengths and weaknesses of correlative species distribution models. Divers Distrib 23:841–853

    Google Scholar 

  • Suárez-Seoane S, Álvarez-Martínez JM, Palacín C, Alonso JC (2018) From general research questions to specific answers: underspecificity as a source of uncertainty in biological conservation. Biol Conserv 227:167–180

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    CAS  PubMed  Google Scholar 

  • Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Glob Ecol Biogeogr 20:904–914

    Google Scholar 

  • Tabachnick BG, Fidell LS (1996) Using Multivariate Statistics, 3 ed. Boston Pearson

  • Tarkesh M, Jetschke G (2012) Comparison of six correlative models in predictive vegetation mapping on a local scale. Environ Ecol Stat 19:437–457

    Google Scholar 

  • Tessarolo G, Rangel TF, Araújo MB, Hortal J (2014) Uncertainty associated with survey design in species distribution models. Divers Distrib 20:1258–1269

    Google Scholar 

  • Thuiller W, Araujo MB, Lavorel S (2004a) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Google Scholar 

  • Thuiller W, Brotons L, Araújo MB, Lavorel S (2004b) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172

    Google Scholar 

  • Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299

    Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    PubMed  Google Scholar 

  • Wisz MS et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    PubMed  Google Scholar 

  • Woodward FI (1986) Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia 70:580–586

    CAS  PubMed  Google Scholar 

  • Worboys G, Francis WL, Lockwood M (2010) Connectivity conservation management: a global guide. Earthscan, Washington

    Google Scholar 

  • Zhang X, Liao C, Li J, Sun Q (2013) Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int J Appl Earth Obs Geoinform 21:506–512

    Google Scholar 

  • Zuckerberg B, Fink D, La Sorte FA, Hochachka WM, Kelling S (2016) Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling. Divers Distrib 22:717–730

    Google Scholar 

  • Zurell D, Elith J, Schröder B (2012) Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. Divers Distrib 18:628–634

    Google Scholar 

Download references

Acknowledgements

We wish to thank P. Laiolo, M. Bañuelos, J. Pato, A. Segura, J. Castaño-Santamaría, L. Calvo and E. Marcos for providing species data and J.M. Alvarez for technical and theoretical discussion on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Suárez-Seoane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Seoane, S., Jiménez-Alfaro, B. & Obeso, J.R. Habitat-partitioning improves regional distribution models in multi-habitat species: a case study with the European bilberry. Biodivers Conserv 29, 987–1008 (2020). https://doi.org/10.1007/s10531-019-01922-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01922-5

Keywords

Navigation