Skip to main content

Advertisement

Log in

Long-Term Evolution of Coal Permeability Under Effective Stresses Gap Between Matrix and Fracture During CO2 Injection

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Understanding the long-term evolution of coal permeability under the influence of gas adsorption-induced multiple processes is crucial for the efficient sequestration of CO2, coalbed methane extraction and enhanced coal bed methane recovery. In previous studies, coal permeability is normally measured as a function of gas pressure under the conditions of constant effective stresses, uniaxial strains and constant confining pressures. In all these experiments, an equilibrium state between coal matrix and fracture is normally assumed. This assumption has essentially excluded the effect of matrix–fracture interactions on the evolution of coal permeability. In this study, we hypothesize that the current equilibrium assumption is responsible for the discrepancy between theoretical expectations and experimental measurements. Under this hypothesis, the evolution of coal permeability is determined by the effective stress gap between coal matrix and fracture. This hypothesis is tested through an experiment of CO2 injection into a coal core under the constant effective stress. In this experiment, the effective stress in the fracture system is unchanged while the effective stress in the matrix evolves as a function of time. In the experiment, the coal permeability was measured continuously throughout the whole period of the experiment (~ 80 days). The experimental results show that the core expands rapidly at the beginning due to the gas injection-induced poroelastic effect. After the injection, the core length remains almost unchanged. But, the measured permeability declines from 60 to 0.48 μD for the first month. It rebounds slowly for the subsequent 2 months. These results indicate that the effective stress gap has a significant impact on the evolution of coal permeability. The switch of permeability from the initial reduction (the first 30 days) to rebound (the subsequent 50 days) suggests a transition of matrix deformation from nearby the fracture wall to further away area. These findings demonstrate that the evolution of coal permeability is primarily controlled by the spatial transformation of effective stresses between matrix and fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anggara, F., Sasaki, K., Sugai, Y.: The correlation between coal swelling and permeability during CO2 sequestration: a case study using Kushiro low rank coals. Int. J. Coal Geol. 166, 62–70 (2016)

    Article  Google Scholar 

  • Baradez, M.O., Mcguckin, C.P., Forraz, N., Pettengell, R., Hoppe, A.: Robust and automated unimodal histogram thresholding and potential applications. Pattern Recogn. 37(6), 1131–1148 (2004)

    Article  Google Scholar 

  • Brace, W.F., Walsh, J., Frangos, W.: Permeability of granite under high pressure. J. Geophys. Res. 73, 2225–2236 (1968)

    Article  Google Scholar 

  • Bustin, A.M.M., Bustin, R.M., Russel-Houston, J.: Horseshoe canyon and belly river coal measures, south central Alberta: part 2—modeling reservoir properties and producible gas. B. Can Pet Geol. 59, 235–260 (2012)

    Article  Google Scholar 

  • Chen, Z.W., Pan, Z.J., Liu, J.S., Connell, L.D., Elsworth, D.: Effect of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: experimental observations. Int. J. Greenh. Gas Control 5(5), 1284–1293 (2011)

    Article  Google Scholar 

  • Chen, D., Pan, Z.J., Ye, Z.H.: Dependence of gas shale fracture permeability on effective stress and reservoir pressure: model match and insights. Fuel 139, 383–392 (2015)

    Article  Google Scholar 

  • Cui, X., Bustin, R.M.: Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bull. 89, 1181–1202 (2005)

    Article  Google Scholar 

  • Danesh, N.N., Chen, Z., Connell, L.D., Kizil, M.S., Pan, Z., Aminossadati, S.M.: Characterisation of creep in coal and its impact on permeability: an experimental study. Int. J. Coal Geol. 173, 200–211 (2017)

    Article  Google Scholar 

  • David, C., Wong, T.F., Zhu, W., Zhang, J.: Laboratory measurement of compaction induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust. Pure. Appl. Geophys. 143, 425–456 (1994)

    Article  Google Scholar 

  • Espinoza, D., Vandamme, M., Pereira, J.-M., Dangla, P., Vidal-Gilbert, S.: Measurement and modeling of adsorptive–poromechanical properties of bituminous coal cores exposed to CO2: adsorption, swelling strains, swelling stresses and impact on fracture permeability. Int. J. Coal Geol. 134, 80–95 (2014)

    Article  Google Scholar 

  • Espinoza, D.N., Pereira, J.-M., Vandamme, M., Dangla, P., Vidal-Gilbert, S.: Desorption-induced shear failure of coal bed seams during gas depletion. Int. J. Coal Geol. 137, 142–151 (2015)

    Article  Google Scholar 

  • Gallagher, N., Wise, G.: A theoretical analysis of the properties of median filters. IEEE Trans. ASSP. 29, 1136–1141 (1981)

    Article  Google Scholar 

  • Gilman, A., Beckie, R.: Flow of coalbed methane to a gallery. Trans. Porous Media. 41, 1–16 (2000)

    Article  Google Scholar 

  • Gray, I.: Reservoir engineering in coal seams: part 1—the physical process of gas storage and movement in coal seams. Reserv Eng. 2(1), 28–34 (1987)

    Article  Google Scholar 

  • Harpalani, S., Chen, G.: Estimation of changes in fracture porosity of coal with gas emision. Fuel 74(10), 1491–1498 (1995)

    Article  Google Scholar 

  • Harpalani, S., Schraufnagel, R.A.: Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Fuel 69, 551–556 (1990)

    Article  Google Scholar 

  • Harpalani, S., Zhao, X.: The unusual response of coal permeability to varying gas pressure and effective stress. The 30th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association. (1989)

  • Heller, R., Vermylen, J., Zoback, M.: Experimental investigation of matrix permeability of gas shales. AAPG Bull. 98(5), 975–995 (2014)

    Article  Google Scholar 

  • Kumar, H., Elsworth, D., Liu, J.S., Pone, D., Mathews, J.P.: Optimizing enhanced coalbed methane recovery for unhindered production and CO2 injectivity. Int. J. Greenh. Gas Con. 11(6), 86–97 (2012)

    Article  Google Scholar 

  • Lin, W., Tang, G.-Q., Kovscek, A.R.: Sorption-induced permeability change of coal during gas-injection processes. Reserv. Eval. Eng. 11, 792–802 (2008)

    Article  Google Scholar 

  • Liu, J.S., Wang, J.G., Chen, Z.W., Wang, S., Elsworth, D., Jiang, Y.J.: Impact of transition from local swelling to macro swelling on the evolution of coal permeability. Int. J. Coal Geol. 88, 31–40 (2011)

    Article  Google Scholar 

  • Liu, Q.Q., Cheng, Y.P., Ren, T., Jing, H.W., Tu, Q.Y., Dong, J.: Experimental observations of matrix swelling area propagation on permeability evolution using natural and reconstituted samples. J. Nat. Gas Sci. Eng. 34, 680–688 (2016)

    Article  Google Scholar 

  • McKee, C.R., Bumb, A.C., Koeing, R.A.: Stress-dependent permeability and porosity of coal. International coalbed methane symposium. 3(1), 81–91 (1987)

    Google Scholar 

  • Mitra, A., Harpalani, S., Liu, S.M.: Laboratory measurement and modeling of coal permeability with continued methane production: part 1—laboratory results. Fuel 94(110), 116 (2012)

    Google Scholar 

  • Palmer, I., Mansoori, J.: How permeability depends on stress and pore pressure in coalbeds: a new model. SPE Reserv. Eval. Eng. 1(6), 539–544 (1996)

    Article  Google Scholar 

  • Pan, Z.J., Connell, L.D., Camilleri, M.: Laboratory characterisation of coal reservoir permeability for primary and enhanced coalbed methane recovery. Int. J. Coal Geol. 82, 252–261 (2010)

    Article  Google Scholar 

  • Pini, R., Ottiger, S., Burlini, L., Storti, G., Mazzotti, M.: Role of adsorption and swelling on the dynamics of gas injection in coal. J. Geophys. Res. Solid Earth. 114, B04203 (2009)

    Article  Google Scholar 

  • Robertson, E.P., Christiansen, R.L.: Measurements of sorption-induced strain. Presented at the 2005 International Coalbed Methane Symposium, Tuscaloosa, Alabama, 17–19 May, Paper 0532 (2005)

  • Robertson, E.P., Christiansen, R.L.: A permeability model for coal and other fractured, sorptive-elastic media. SPE J. 13(3), 314–324 (2006)

    Article  Google Scholar 

  • Reucroft, P.J., Patel, H.: Gas-induced swelling in coal. Fuel 65, 816–820 (1986)

    Article  Google Scholar 

  • Seidle, J.P., Huitt, L.G.: Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increase. In: SPE International Meeting on Petroleum Engineering, Beijing, China, 14–17 November. SPE 30010 (1995)

  • Seidle, J.P., Jeansonne, M.W., Erickson, D.J.: Application of matchstick geometry to stress dependent permeability in coals. In: SPE 24361 SPE Rocky Mountain Regional Meeting Held in Casper, Wyoming, USA, 18–21 May (1992)

  • Shi, J.Q., Durucan, S.: Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery. Trans. Porous Med. 56(1), 1–16 (2004)

    Article  Google Scholar 

  • Shi, R., Liu, J.S., Wei, M.Y., Elsworth, D., Wang, X.M.: Mechanistic analysis of coal permeability evolution data under stress-controlled conditions. Int. J. Rock Mech, Min (2018). (In revision)

    Book  Google Scholar 

  • Siriwardane, H., Haljasmaa, I., Mclendon, R., Irdi, G., Soong, Y., Bromhal, G.: Influence of carbon dioxide on coal permeability determined by pressure transient methods. Int. J. Coal Geol. 77(1), 109–118 (2009)

    Article  Google Scholar 

  • Somerton, W.H., Söylemezoglu, I.M., Dudley, R.C.: Effect of stress on permeability of coal. Int. J. Rock Mech. Min. Sci. Geomech. Abst. 12(5–6), 129–145 (1975)

    Article  Google Scholar 

  • Wang, Y., Liu, S.M.: Estimation of pressure-dependent diffusive permeability of coal using methane diffusion coefficient: laboratory measurements and modeling. Energy Fuels 30(11), 8968–8976 (2016)

    Article  Google Scholar 

  • Wang, S., Elsworth, D., Liu, J.S.: Permeability evolution in fractured coal: the roles of fracture geometry and water-content. Int. J. Coal Geol. 87, 13–25 (2011)

    Article  Google Scholar 

  • Wang, S., Elsworth, D., Liu, J.: A mechanistic model for permeability evolution in fractured sorbing media. J. Geophys. Res. Solid Earth 117, B06205 (2012)

    Google Scholar 

  • Wang, C.G., Liu, J.S., Feng, J.T., Wei, M.Y., Wang, C.S., Jiang, Y.J.: Effects of gas diffusion from fractures to coal matrix on the evolution of coal strains: experimental observations. Int. J. Coal Geol. 162, 74–84 (2016)

    Article  Google Scholar 

  • Wei, M.Y., Liu, J.S., Elsworth, D., Wang E.Y.: Triple porosity modelling for the simulation of multi-scale flow mechanisms in shale reservoirs. Geofluids, 6948726 (2018)

  • Wu, Y., Liu, J.S., Elsworth, D., Chen, Z.W., Connell, L., Pan, Z.J.: Dual poroelastic response of coal seam to CO2 injection. Int. J. Greenh. Gas Con. 4(4), 668–678 (2010)

    Article  Google Scholar 

  • Zhang, H.B., Liu, J.S., Elsworth, D.: How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model. Int. J. Rock Mech. Min. Sci. 45(8), 1226–1236 (2008)

    Article  Google Scholar 

  • Zhang, S.W., Liu, J.S., Wei, M.Y., Elsworth, D.: Coal permeability maps under the influence of multiple coupled processes. Int. J. Coal Geol. 187, 71–82 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program (2017YFC0804400), the Fundamental Research Funds for the Central Universities (2015XKZD03),the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R103), and the Priority Academic Program Development of Jiangsu Higher Education Institutions. These sources of support are gratefully acknowledged. We also thank Jianhong Kang for constructive comments during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyao Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Liu, J., Shi, R. et al. Long-Term Evolution of Coal Permeability Under Effective Stresses Gap Between Matrix and Fracture During CO2 Injection. Transp Porous Med 130, 969–983 (2019). https://doi.org/10.1007/s11242-019-01350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01350-7

Keywords

Navigation