Skip to main content
Log in

Hydrodynamic Dispersion and Lamb Surfaces in Darcy Flow

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Transport processes such as the dispersion and mixing of solutes are governed by the interplay of advection and diffusion, where advection acts to organise fluid streamlines and diffusion acts to randomise solute molecules. Thus, the structure and organisation of streamlines, termed the Lagrangian kinematics of the flow, is central to the understanding and modelling of these transport processes. A key question is whether the streamlines in three-dimensional (3D) Darcy flows can wander freely through the fluid domain, or whether all streamlines of the flow are organised into a series of smooth, non-intersecting two-dimensional (2D) surfaces. The existence of such a foliation of surfaces constrains the Lagrangian kinematics in a manner similar to that of 2D flows, which in turn constrains the allowable transport processes. In a series of pioneering studies, Sposito (Water Resour. Res., 30(8):2395–2401, 1994; Adv. Water Resour., 24(7):793–801, 2001) argues that steady Darcy flow in locally isotropic media gives rise to Lamb surfaces, 2D material surfaces which are spanned by both the streamlines and vortex lines (field lines of the vorticity vector) of the flow. Hence, the existence of these surfaces renders the kinematics of such 3D steady Darcy flow as two dimensions. This topological constraint strongly affects transverse mixing and dispersion because 2D steady flow fields limit the rate of deformation of fluid elements and can only admit zero hydrodynamic transverse dispersion. In this study, however, we show that Lamb surfaces are not ubiquitous to all steady Darcy flows in locally isotropic media. We derive the conditions for when Lamb surfaces exist in such Darcy flows, and discuss the implications of these findings for the transport, mixing, and dispersion of solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aref, H.: Stirring by chaotic advection. J. Fluid Mech. 143, 1–21 (1984)

    Article  Google Scholar 

  • Arnol’d, V.I.: Sur la topologie des écoulments stationnaires des fluids parfaits. Comptes Rendus Acad. Sci. Paris 261, 312–314 (1965)

    Google Scholar 

  • Attinger, S., Dentz, M., Kinzelbach, W.: Exact transverse macro dispersion coefficients for transport in heterogeneous porous media. Stoch Environ Res Risk Assess 18(1), 9–15 (2004)

    Article  Google Scholar 

  • Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2015)

  • Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media No. 1 in Dover Classics of Science and Mathematics. Dover, Mineola (1972)

    Google Scholar 

  • Boyland, P.L., Aref, H., Stremler, M.A.: Topological fluid mechanics of stirring. J Fluid Mech 403, 277–304 (2000)

    Article  Google Scholar 

  • Brand, L.: Vector and Tensor Analysis. Wiley, Hoboken (1947)

    Google Scholar 

  • Cho, M.S., Solano, F., Thomson, N.R., Trefry, M.G., Lester, D.R., Metcalfe, G.: Field trials of chaotic advection to enhance reagent delivery. Groundw. Monit. Remediat. 39(3), 23–39 (2019). https://doi.org/10.1111/gwmr.12339

    Article  Google Scholar 

  • Danckwerts, P.: The effect of incomplete mixing on homogeneous reactions. Chem. Eng. Sci. 8(1), 93–102 (1958)

    Article  Google Scholar 

  • Dentz, M., Carrera, J.: Effective dispersion in temporally fluctuating flow through a heterogeneous medium. Phys. Rev. E 68, 036310 (2003)

    Article  Google Scholar 

  • Dentz, M., LeBorgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120–121, 1–17 (2011). https://doi.org/10.1016/j.jconhyd.2010.05.002

    Article  Google Scholar 

  • Dentz, M., Lester, D.R., Borgne, T.L., de Barros, F.P.J.: Deformation in steady random flow is a Lévy walk. Phys. Rev. E 94, 061102 (2016)

    Article  Google Scholar 

  • Hénon, M.: Sur la topologie des lignes de courant dans un cas particulier. Comptes Rendus Acad. Sci. Paris 262, 312–314 (1966)

    Google Scholar 

  • Kelvin, W.: Papers on Electrostatics and Magnetism. Macmillan & Company, London (1884)

    Google Scholar 

  • Kozlov, V.: Notes on steady vortex motions of continuous medium. J. Appl. Math. Mech. 47(2), 288–289 (1983)

    Article  Google Scholar 

  • Lamb, H.: Hydrodynamics. The University Press, Cambridge (1932)

    Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110, 204501 (2013)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458–498 (2015)

    Article  Google Scholar 

  • Lester, D., Trefry, M., Metcalfe, G.: Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport. Adv. Water Resour. 97, 175–192 (2016)

    Article  Google Scholar 

  • Lester, D.R., Dentz, M., Borgne, T.L., Barros, F.P.J.D.: Fluid deformation in random steady three-dimensional flow. J. Fluid Mech. 855, 770–803 (2018)

    Article  Google Scholar 

  • Lester, D.R., Dentz, M., Le Borgne, T.: Chaotic mixing in three-dimensional porous media. J. Fluid Mech. 803, 144–174 (2016)

    Article  Google Scholar 

  • Lester, D.R., Metcalfe, G., Trefry, M.G.: Is chaotic advection inherent to porous media flow? Phys. Rev. Lett. 111, 174101 (2013)

    Article  Google Scholar 

  • Lester, D.R., Metcalfe, G., Trefry, M.G.: Anomalous transport and chaotic advection in homogeneous porous media. Phys. Rev. E 90, 063012 (2014)

    Article  Google Scholar 

  • Lester, D.R., Rudman, M., Metcalfe, G., Trefry, M.G., Ord, A., Hobbs, B.: Scalar dispersion in a periodically reoriented potential flow: acceleration via Lagrangian chaos. Phys. Rev. E 81, 046319 (2010)

    Article  Google Scholar 

  • Metcalfe, G., Lester, D., Ord, A., Kulkarni, P., Trefry, M., Hobbs, B.E., Regenaur-Lieb, K., Morris, J.: A partially open porous media flow with chaotic advection: towards a model of coupled fields. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1910), 217–230 (2010)

    Article  Google Scholar 

  • Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1, 117–129 (1969)

    Article  Google Scholar 

  • Ottino, J.M.: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Piaggio, H.: An Elementary Treatise on Differential Equations and Their Applications. Bell’s mathematical series : Advanced section. G. Bell and Sons, London (1952)

    Google Scholar 

  • Poincaré, H.: Théorie des tourbillons. Réimpressions (Editions Jacques Gabay). Jacques Gabay, Paris (1893)

  • Sposito, G.: Steady groundwater flow as a dynamical system. Water Resour. Res. 30(8), 2395–2401 (1994)

    Article  Google Scholar 

  • Sposito, G.: On steady flows with Lamb surfaces. Int. J. Eng. Sci. 35(3), 197–209 (1997)

    Article  Google Scholar 

  • Sposito, G.: A note on helicity conservation in steady fluid flows. J. Fluid Mech. 363, 325–332 (1998)

    Article  Google Scholar 

  • Sposito, G.: Topological groundwater hydrodynamics. Adv. Water Resour. 24(7), 793–801 (2001)

    Article  Google Scholar 

  • Sposito, G., Weeks, S.W.: Tracer advection by steady groundwater flow in a stratified aquifer. Water Resour. Res. 34(5), 1051–1059 (1998)

    Article  Google Scholar 

  • Trefry, M.G., Lester, D.R., Metcalfe, G., Ord, A., Regenauer-Lieb, K.: Toward enhanced subsurface intervention methods using chaotic advection. J. Contam. Hydrol. 127(1–4), 15–29 (2012)

    Article  Google Scholar 

  • Trefry, M.G., Lester, D.R., Metcalfe, G., Wu, J.: Temporal fluctuations and poroelasticity can generate chaotic advection in natural groundwater systems. Water Resour. Res. 55(4), 3347–3374 (2019)

    Article  Google Scholar 

  • Truesdell, C.: The Kinematics of Vorticity. Indiana University Publications: Science Series. Indiana University Press, Indiana (1954)

    Google Scholar 

  • Villermaux, E.: Mixing by porous media. Comptes Rendus Mécanique 340(11–12), 933–943 (2012)

    Article  Google Scholar 

  • Ye, Y., Chiogna, G., Cirpka, O.A., Grathwohl, P., Rolle, M.: Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115, 194502 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Lester.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lester, D.R., Bandopadhyay, A., Dentz, M. et al. Hydrodynamic Dispersion and Lamb Surfaces in Darcy Flow. Transp Porous Med 130, 903–922 (2019). https://doi.org/10.1007/s11242-019-01346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01346-3

Keywords

Navigation