Skip to main content
Log in

SFFS–SVM based prostate carcinoma diagnosis in DCE-MRI via ACM segmentation

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The prostate carcinoma is amongst the most commonly occurring cancers in Taiwanese males. Moreover, it is one of the chief reasons for cancer deaths among Taiwanese men, and early diagnosis of prostate cancer is vital for effective treatment. In this work, a diagnosis model for identifying the prostate carcinoma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is proposed. The urologists utilize the DCE-MRI as a support mechanism for better diagnosis of the carcinoma development in the prostate. Gadolinium is utilized as the contrast agent for the DCE-MRI data, and it was injected once and the time series data were captured at distinct time intervals of 0, 20, 60, and 100 s correspondingly. Primarily, after pre-processing the DCE-MRI information, the prostate data is segmented by employing the active contour model. Subsequently, 136 features are extracted from the segmented prostrate expanse of the DCE-MRI data, and the relative intensity change curve is computed. Afterward, Fisher’s discriminant ratio and sequential forward floating selection is deployed for choosing ten highly discriminative features. Lastly, the segmented prostate regions are classified into two groups, namely: tumor and normal classes by employing the support vector machine classifier. The experimental results elucidate that the proposed system is superior on the subject of accuracy, sensitivity, and specificity when compared with specific existing methods. Additionally, the proposed system also demonstrates a 94.75% accuracy. Moreover, this signifies the fact that the proposed method for analyzing the DCE data has shown prodigious prospects in the prostate carcinoma diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: 2017 Statistics of Causes of Death in Taiwan (https://www.mohw.gov.tw/cp-3961-42866-2.html)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albayrak, N. B., Betul Oktay, A., & Akgul, Y. S. (2015). Prostate detection from abdominal ultrasound images: A part based approach. In 2015 IEEE international conference on image processing (ICIP), Quebec City, QC (pp. 1955–1959). https://doi.org/10.1109/icip.2015.7351142.

  • Andriole, G. L., et al. (2009). Mortality results from a randomized prostate cancer screening trial. New England Journal of Medicine,360(13), 1310–1319.

    Article  Google Scholar 

  • Artan, Y., Haider, M. A., Langer, D. L., van der Kwast, T. H., Evans, A. J., Yang, Y., et al. (2010). Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Transactions on Image Processing,19(9), 2444–2455.

    Article  MathSciNet  MATH  Google Scholar 

  • Azizi, S., Bayat, S., Yan, P., Tahmasebi, A., Kwak, J. T., Xu, S., et al. (2018). Deep recurrent neural networks for prostate cancer detection: Analysis of temporal enhanced ultrasound. IEEE Transactions on Medical Imaging,37(12), 2695–2703.

    Article  Google Scholar 

  • Azizi, S., Imani, F., Ghavidel, S., Tahmasebi, A., Kwak, J. T., Xu, S., et al. (2016). Detection of prostate cancer using temporal sequences of ultrasound data: A large clinical feasibility study. International Journal of Computer Assisted Radiology and Surgery,11(6), 947–956.

    Article  Google Scholar 

  • Brix, G., Semmler, W., Schad, R., Layer, G., & Lorenz, W. J. (1991). Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. Journal of Computer Assisted Tomography,15, 621–628.

    Article  Google Scholar 

  • Buckley, D. L., Roberts, C., Parker, G. J., Logue, J. P., & Hutchinson, C. E. (2004). Prostate cancer: Evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging—Initial experience. Radiology,233, 709–715.

    Article  Google Scholar 

  • Cancer Society Atlanta. (2011). http://www.cancer.org.

  • Castaneda, B., Hoyt, K., Zhang, M., Pasternack, D., Baxter, L., Nigwekar, P., et al. (2007). P1C-9 prostate cancer detection based on three dimensional sonoelastography. In Ultrasonics symposium, 2007. IEEE, New York, NY (pp. 1353–1356). https://doi.org/10.1109/ultsym.2007.340.

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27.

    Article  Google Scholar 

  • Chang, C.-Y., Chung, P.-C., & Lai, P. H. (2002). Using a spatiotemporal neural network on dynamic gadolinium-enhanced MR images for diagnosing recurrent nasal papilloma. IEEE Transactions on Nuclear Science,49, 225–238.

    Article  Google Scholar 

  • Chang, C.-Y., Hu, H.-Y., & Tsai, Y.-S. (2015). Prostate cancer detection in dynamic MRIs. In 2015 IEEE international conference on digital signal processing (DSP), Singapore (pp. 1279–1282).

  • Chang, C.-Y., & Zhuang, D.-F. (2007). A fuzzy-based learning vector quantization neural network for recurrent nasal papilloma detection. IEEE Transactions on Circuits and Systems,54, 2619–2627.

    Article  Google Scholar 

  • Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Network,17, 113–126.

    Article  MATH  Google Scholar 

  • Chung, A. G., Khalvati, F., Shafiee, M. J., Haider, M. A., & Wong, A. (2015). Prostate cancer detection via a quantitative radiomics-driven conditional random field framework. IEEE Access,3, 2531–2541. https://doi.org/10.1109/ACCESS.2015.2502220.

    Article  Google Scholar 

  • Department of Health and Welfare Taiwan. (2018). 2017 statistics of causes of death in Taiwan.

  • Dickinson, L., Ahmed, H. U., Allen, C., et al. (2011). Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: Recommendations from a European consensus meeting. European Urology,59, 477–494.

    Article  Google Scholar 

  • Engelbrecht, M. R., Huisman, H. J., Laheij, R. J., et al. (2003). Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology,229, 248–254.

    Article  Google Scholar 

  • Fallahpour, S., Lakvan, E. N., & Zadeh, M. H. (2017). Using an ensemble classifier based on sequential floating forward selection for financial distress prediction problem. Journal of Retailing and Consumer Services,34, 159–167.

    Article  Google Scholar 

  • Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al. (2014). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer. https://doi.org/10.1002/ijc.29210.

    Article  Google Scholar 

  • Ferreira, A., Gentil, F., & Tavares, J. M. R. S. (2014). Segmentation algorithms for ear image data towards biomechanical studies. Computer Methods in Biomechanics and Biomedical Engineering,17(8), 888–904.

    Article  Google Scholar 

  • Gonçalves, P. C. T., Tavares, J. M. R. S., & Jorge, R. M. N. (2008). Segmentation and simulation of objects represented in images using physical principles. Computer Modeling in Engineering and Sciences,32, 45–55.

    MathSciNet  MATH  Google Scholar 

  • Hara, N., Okuizumi, M., Koike, H., Kawaguchi, M., & Bilim, V. (2005). Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate,62, 140–147.

    Article  Google Scholar 

  • Hegde, J. V., Mulkern, R. V., Panych, L. P., Fennessy, F. M., Fedorov, A., Maier, S. E., et al. (2013). Multiparametric MRI of prostate cancer: An update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. Journal of Magnetic Resonance Imaging,37(5), 1035–1054.

    Article  Google Scholar 

  • Hoeks, C. M., Barentsz, J. O., Hambrock, T., Yakar, D., Somford, D. M., Heijmink, S. W., et al. (2011). Prostate cancer: Multiparametric MR imaging for detection, localization, and staging. Radiology,261, 46–66.

    Article  Google Scholar 

  • Huang, P.-W., & Lee, C.-H. (2009). Automatic classification for pathological prostate images based on fractal analysis. IEEE Transactions on Medical Imaging,28(7), 1037–1050.

    Article  Google Scholar 

  • Huisman, H. J., Engelbrecht, M. R., & Barentsz, J. O. (2001). Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate. Journal of Magnetic Resonance Imaging,13, 607–614.

    Article  Google Scholar 

  • Jiang, Z., Yamauchi, K., Yoshioka, K., Aoki, K., Kuroyanagi, S., Iwata, A., et al. (2006). Support vector machine-based feature selection for classification of liver fibrosis grade in chronic hepatitis C. Journal of Medical Systems,30(5), 389–394.

    Article  Google Scholar 

  • Karn, P. K., Biswal, B., & Samantaray, S. R. (2019). Robust retinal blood vessel segmentation using hybrid active contour model. IET Image Processing,13(3), 440–450.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snake: Active contour models. International Journal of Computer Vision,1, 321–331.

    Article  MATH  Google Scholar 

  • Khalvati, F., Wong, A., & Haider, M. A. (2015). Automated prostate cancer detection via comprehensive multiparametric magnetic resonance imaging texture feature models. BMC Medical Imaging,15(1), 15–27.

    Article  Google Scholar 

  • Lavasani, S. N., Mostaar, A., & Ashtiyani, M. (2018). Automatic prostate cancer segmentation using kinetic analysis in dynamic contrast-enhanced MRI. Journal of Biomedical Physics and Engineering,8(1), 107–116.

    Google Scholar 

  • Le Bris, A., Chehata, N., Briottet, X., & Paparoditis, N. (2014). Use intermediate results of wrapper band selection methods: A first step toward the optimization of spectral configuration for land cover classifications. In 2014 6th workshop on hyperspectral image and signal processing: Evolution in remote sensing (WHISPERS). IEEE.

  • Lemaître, G., Martí, R., Freixenet, J., Vilanova, J. C., Walker, P. M., & Meriaudeau, F. (2015). Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Computers in Biology and Medicine,60, 8–31.

    Article  Google Scholar 

  • Li, B., & Meng, M. Q.-H. (2012). Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. IEEE Transactions on Information Technology in Biomedicine,16(3), 323–329.

    Article  Google Scholar 

  • Li, D., Zhong, W., Deh, K. M., Nguyen, T. D., Prince, M. R., Wang, Y., et al. (2019). Discontinuity preserving liver MR registration with three-dimensional active contour motion segmentation. IEEE Transactions on Biomedical Engineering,66(7), 1884–1897.

    Article  Google Scholar 

  • Lin, J. M. (2012). Prostate cancer segmentation in dynamic MRI. M.S. thesis, National Yunlin University of Science and Technology.

  • Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2014). Computer-aided detection of prostate cancer in MRI. IEEE Transactions on Medical Imaging,33(5), 1083–1092. https://doi.org/10.1109/TMI.2014.2303821.

    Article  Google Scholar 

  • Ma, Z., & Tavares, J. M. R. S. (2017). Effective features to classify skin lesions in dermoscopic images. Expert System with Applications,84, 92–101.

    Article  Google Scholar 

  • Ma, Z., Tavares, J. M. R. S., & Jorge, R. N. (2009). A review on the current segmentation algorithms for medical images. In Proceedings of the first international conference on computer imaging theory and applications (Vol. 1, pp. 135–140).

  • Ma, Z., Tavares, J. M. R. S., Jorge, R. N., & Mascarenhas, T. (2019). A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Computer Methods in Biomechanics and Biomedical Engineering,13(2), 235–246.

    Article  Google Scholar 

  • Madabhushi, A., Feldman, M. D., Metaxas, D. N., Tomaszewski, J., & Chute, D. (2005). Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. IEEE Transactions on Medical Imaging,24(12), 1611–1625. https://doi.org/10.1109/TMI.2005.859208.

    Article  Google Scholar 

  • Moradi, M., Abolmaesumi, P., Isotalo, P. A., Siemens, D. R., Sauerbrei, E. E., & Mousavi, P. (2006). P3E-7 a new feature for detection of prostate cancer based on RF ultrasound echo signals. In 2006 IEEE ultrasonics symposium, Vancouver, BC (pp. 2084–2087). https://doi.org/10.1109/ultsym.2006.530.

  • Muller-Schimpfle, M., Brix, G., Layer, G., Schlag, P., Engenhart, R., Frohmuller, S., et al. (1993). Recurrent rectal cancer diagnosis with dynamic MR image. Radiology,189, 881–889.

    Article  Google Scholar 

  • Nevatia, R., & Babu, K. R. (1980). Linear feature extraction and description. Computer Graphics and Image Processing,13, 257–269.

    Article  Google Scholar 

  • Nixon, M. (2012). Feature extraction and image processing for computer vision. San Diego: Academic Press.

    Google Scholar 

  • Oliveira, R. B., Papa, J. P., Pereira, A. S., & Tavares, J. M. (2018). Computational methods for pigmented skin lesion classification in images: Review and future trends. Neural Computing and Applications,29, 613–636.

    Article  Google Scholar 

  • Peng, Y., Jiang, Y., Antic, T., Giger, M. L., Eggener, S., & Oto, A. (2013). A study of T2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. Proceedings of SPIE,8670, 86701H.

    Article  Google Scholar 

  • Pudil, P., Ferri, F. J., Novovicova, J., & Kittler, J. (1994). Floating search methods for feature selection with nonmonotonic criterion functions. In Proceedings of the 12th IAPR international conference on pattern recognition, 1994. Conference B: Computer vision and image processing, Jerusalem (Vol. 2, pp. 279–283). https://doi.org/10.1109/icpr.1994.576920.

  • Qiu, Z., Jin, J., Lam, H.-K., Zhang, Y., Wang, X., & Cichocki, A. (2016). Improved SFFS method for channel selection in motor imagery based BCI.”. Neurocomputing,207, 519–527.

    Article  Google Scholar 

  • Sammouda, R., Aboalsamh, H., & Saeed, F. (2015). Comparison between K mean and fuzzy C-mean methods for segmentation of near infrared fluorescent image for diagnosing prostate cancer. In 2015 international conference on computer vision and image analysis applications (ICCVIA), Sousse (pp. 1–6). https://doi.org/10.1109/iccvia.2015.7351905.

  • Schröder, F. H., et al. (2009). Screening and prostate-cancer mortality in a randomized European study. New England Journal of Medicine,360(13), 1320–1328.

    Article  Google Scholar 

  • Seitz, M., Scher, B., Scherr, M., et al. (2007). Bildgebende Verfahren bei der Diagnose des Prostatakarzinoms. Urologe (A),46, 1435–1448.

    Article  Google Scholar 

  • Singh, M., Singh, S., & Gupta, S. (2014). An information fusion based method for liver classification using texture analysis of ultrasound images. Information Fusion,19, 91–96.

    Article  Google Scholar 

  • Srinivasan, K., & Kanakaraj, J. (2011). A study on super-resolution image reconstruction techniques. Computer Engineering and Intelligent Systems,2, 222–227.

    Google Scholar 

  • Srinivasan, K., & Kanakaraj, J. (2013a). A review on potential issues and challenges in MR imaging. The Scientific World Journal,2013, 783715. https://doi.org/10.1155/2013/783715.

    Article  Google Scholar 

  • Srinivasan, K., & Kanakaraj, J. (2013b). A review of magnetic resonance imaging techniques. Smart Computing Review,3, 358–366. https://doi.org/10.6029/smartcr.2013.05.006.

    Article  Google Scholar 

  • Tan, M., Pu, J., & Zheng, B. (2014). Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model. International Journal of Computer Assisted Radiology and Surgery,9(6), 1005–1020.

    Article  Google Scholar 

  • Vapnik, V., & Cortes, C. (1995). Support-vector networks. Machine Learning,20, 273–297.

    MATH  Google Scholar 

  • Verma, S., Turkbey, B., Muradyan, N., et al. (2012). Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR. American Journal of Roentgenology,198, 1277–1288.

    Article  Google Scholar 

  • Villers, A., Puech, P., Mouton, D., Leroy, X., Ballereau, C., & Lemaitre, L. (2006). Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: Correlation with radical prostatectomy findings. Journal of Urology,176, 2432–2437.

    Article  Google Scholar 

  • Wang, S., Li, D., Song, X., Wei, Y., & Li, H. (2011). A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification. Expert Systems with Applications,38(7), 8696–8702. https://doi.org/10.1016/j.eswa.2011.01.077.

    Article  Google Scholar 

  • Wang, Z., Liu, C., Cheng, D., Wang, L., Yang, X., & Cheng, K.-T. (2018). Automated detection of clinically significant prostate cancer in mp-MRI images based on an end-to-end deep neural network. IEEE Transactions on Medical Imaging,37(5), 1127–1139.

    Article  Google Scholar 

  • Wang, Y., Wang, D., Geng, N., Wang, Y., Yin, Y., & Jin, Y. (2019). Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection. Applied Soft Computing,77, 188–204.

    Article  Google Scholar 

  • Xu, H., Baxter, J. S. H., Akin, O., & Cantor-Rivera, D. (2019). Prostate cancer detection using residual networks. International Journal of Computer Assisted Radiology and Surgery. https://doi.org/10.1007/s11548-019-01967-5.

    Article  Google Scholar 

  • Yakar, D., Hambrock, T., Huisman, H., et al. (2010). Feasibility of 3 T dynamic contrast enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Investigative Radiology,45, 121–125.

    Article  Google Scholar 

  • Yu, Y., Cao, H., Wang, Z., & Li, Y. (2019). Texture-and-shape based active contour model for insulator segmentation. IEEE Access,7, 78706–78714.

    Article  Google Scholar 

  • Zheng, C.-H., Huang, D.-S., Kong, X.-Z., & Zhao, X.-M. (2008). Gene expression data classification using consensus independent component analysis. Genomics, Proteomics & Bioinformatics,6(2), 74–82.

    Article  Google Scholar 

  • Zidan, S., & Tantawy, H. I. (2015). Prostate carcinoma: Accuracy of diagnosis and differentiation with dynamic contrast-enhanced MRI and diffusion weighted imaging. The Egyptian Journal of Radiology and Nuclear Medicine,46(4), 1193–1203. https://doi.org/10.1016/j.ejrnm.2015.06.021.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology, Taiwan, ROC, under Grant MOST 103-2221-E-224-016-MY3.

Funding

This research was partially funded by “Intelligent Recognition Industry Service Research Center” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan (Grant No. 108N04-2) and Ministry of Science and Technology in Taiwan (Grant No. MOST 103-2221-E-224-016-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Yu Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CY., Srinivasan, K., Hu, HY. et al. SFFS–SVM based prostate carcinoma diagnosis in DCE-MRI via ACM segmentation. Multidim Syst Sign Process 31, 689–710 (2020). https://doi.org/10.1007/s11045-019-00682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00682-3

Keywords

Navigation