Skip to main content
Log in

A 640-Gbps, 15.2344-b/s/Hz full-duplex optical fiber/wireless single-channel coherent communication system using IQM-based DP-256-QAM and DSP techniques

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A full-duplex optical fiber/wireless single-channel coherent communication system is presented for high-speed data center interconnections. In-phase and quadrature modulator (IQM)-based dual polarization 256 quadrature amplitude modulation (DP-256-QAM) is implemented to achieve a maximum data rate of 640 Gbps with 40 Gbaud symbol rate for both the single-mode fiber (SMF) and free-space optics (FSO) links. Advanced digital signal processing (DSP) algorithms have been implemented at the receiver to compensate for signal impairments during propagation. The system with optical IQM and DSP algorithms can be fabricated in the form of cost-efficient integrated circuits and possess a potential spectral efficiency of 15.2344 b/s/Hz. A maximum transmission distance of 160 km and 4 km is achieved in simulation platform for the SMF and FSO links, respectively. The system performance is evaluated regarding laser linewidth requirements, optical signal-to-noise ratio tolerance, receiver sensitivity and launched optical power. This transceiver system shall be useful in high-speed long-haul communications, and the FSO system provides the same data rate to the remote areas, and last mile connections where laying of an optical fiber is not possible or cost is a major concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Winzer, P.J., Neilson, D.T., Chraplyvy, A.R., Labs, N.B., Road, H.: Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26(18), 24190 (2018)

    Article  Google Scholar 

  2. Zhong, K., Zhou, X., Huo, J., Yu, C., Lu, C., Lau, A.P.T.: Digital signal processing for short-reach optical communications: a review of current technologies and future trends. J. Lightwave Technol. 36(2), 377 (2018)

    Article  Google Scholar 

  3. Mehra, M., Sadawarti, H., Singh, M.L.: Performance analysis of coherent optical communication system for higher order dual polarization modulation formats. Optik 135, 174 (2017)

    Article  Google Scholar 

  4. Krummrich, P.M.: Advanced modulation formats for more robust optical transmission systems. AEU Int. J. Electron. Commun. 61(3), 141 (2007)

    Article  Google Scholar 

  5. Singh, S., Singh, S.: Performance analysis of spectrally encoded hybrid WDM-OCDMA network employing optical orthogonal modulation format against eavesdropper. AEU Int. J. Electron. Commun. 82, 492 (2017)

    Article  Google Scholar 

  6. Djeddou, M., Berrahma, F., Ghanem, K.: Improved spectral efficiency of SM-OFDM using a set of rotated constellations. AEU Int. J. Electron. Commun. 93, 317 (2018)

    Article  Google Scholar 

  7. Guesmi, L., Ragheb, A.M., Fathallah, H., Menif, M.: Experimental demonstration of simultaneous modulation format/symbol rate identification and optical performance monitoring for coherent. J. Lightwave Technol. 36(11), 2230 (2017)

    Article  Google Scholar 

  8. Wang, Y., Kasai, K., Yoshida, M., Nakazawa, M.: 320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator. Opt. Express 24(19), 31310 (2016)

    Google Scholar 

  9. Toyoda, K., Koizumi, Y., Omiya, T., Yoshida, M., Hirooka, T., Nakazawa, M.: Marked performance improvement of 256 QAM transmission using a digital back-propagation method. Opt. Express 20(18), 19815 (2012)

    Article  Google Scholar 

  10. Zhou, X., Nelson, L.: Advanced DSP for 400 Gb/s and beyond optical networks. J. Lightwave Technol. 8724(c), 1 (2014)

    Google Scholar 

  11. Essiambre, R.J., Kramer, G., Winzer, P.J.P., Foschini, G.G.J., Goebel, B., Winzer, P.J.P., Kramer, G., Goebel, B.: Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662 (2010)

    Article  Google Scholar 

  12. Winzer, P.J., Essiambre, R.J.: Advanced optical modulation formats. Proc. IEEE 94(5), 952 (2006)

    Article  Google Scholar 

  13. Freund, R., Seimetz, M., Molle, L., Baghdasaryan, T., Forzati, M., Martensson, J., Freund, R.: Next generation optical networks based on higher-order modulation formats, coherent receivers and electronic distortion equalization. ICTON Mediterr. Winter Conf. Th3.1, 1 (2009)

    Google Scholar 

  14. Kasai, K., Wang, Y., Beppu, S., Yoshida, M., Nakazawa, M.: 80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver. Opt. Express 23(22), 29174 (2015)

    Article  Google Scholar 

  15. Omiya, T., Yoshida, M., Nakazawa, M.: 400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency using an improved FDE technique. Opt. Express 21(3), 2632 (2013)

    Article  Google Scholar 

  16. Wang, Y., Okamoto, S., Kasai, K., Yoshida, M.: QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer. Opt. Express 26(13), 514 (2018)

    Google Scholar 

  17. Li, X., Luo, M., Qiu, Y., Alphones, A., Zhong, W.D., Yu, C., Yang, Q.: Independent component analysis based digital signal processing in coherent optical fiber communication systems. Opti. Commun. 409(April 2017), 13 (2018)

    Google Scholar 

  18. Rosenkranz, W., Xia, C.: Electrical equalization for advanced optical communication systems. AEU Int. J. Electron. Commun. 61(3), 153 (2007)

    Article  Google Scholar 

  19. Zhu, Y., Jiang, M., Chen, Z., Zhang, F., Member, S., Member, S.: Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz. J. Lightwave Technol. 36(14), 2912 (2018)

    Article  Google Scholar 

  20. Armstrong, J.A.: Theory of interferometric analysis of laser phase noise. J. Opt. Soc. Am. 56(8), 1024 (1966)

    Article  Google Scholar 

  21. Zhang, R., Ma, J., Wang, Z., Zhang, J., Li, Y., Zheng, G., Liu, W., Yu, J., Zhang, Q., Wang, Q., Liu, R.: Full-duplex fiber-wireless link with 40 Gbit/s 16-QAM signals for alternative wired and wireless accesses based on homodyne/heterodyne coherent detection. Opt. Fiber Technol. 20(3), 261 (2014)

    Article  Google Scholar 

  22. Kakati, D., Arya, S.C.: A full-duplex optical fiber/wireless coherent communication system with digital signal processing at the receiver. Optik 171(May), 190 (2018)

    Article  Google Scholar 

  23. Kakati, D., Arya, S.: Full-duplex 20 Gbit/s fiber-optic link design based on dual-polarization differential quaternary phase-shift keying. In: Springer Proceedings in Physics, vol. 194 (2017)

    Google Scholar 

  24. Schmogrow, R., Nebendahl, B., Winter, M., Josten, A., Hillerkuss, D., Koenig, S., Meyer, J., Dreschmann, M., Huebner, M., Koos, C., Becker, J., Freude, W., Leuthold, J.: Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63]. IEEE Photonics Technol. Lett. 24(23), 2198 (2012)

    Article  Google Scholar 

  25. Savory, S.J.: Digital filters for coherent optical receivers. Opt. Express 16(2), 804 (2008)

    Article  Google Scholar 

  26. Oerder, M., Meyr, H.: Digital filter and square timing recovery. IEEE Trans. Commun. 36(5), 605 (1988)

    Article  Google Scholar 

  27. Fatadin, I., Savory, S.J., Ives, D.: Compensation of quadrature imbalance in an optical QPSK coherent receiver. IEEE Photonics Technol. Lett. 20(20), 1733 (2008)

    Article  Google Scholar 

  28. Ciblat, P., Vandendorpe, L.: Blind carrier frequency offset estimation for noncircular constellation-based transmissions. IEEE Trans. Signal Process. 51(5), 1378 (2003)

    Article  MathSciNet  Google Scholar 

  29. Pfau, T., Hoffmann, S., Noé, R.: Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations. J. Lightwave Technol. 27(8), 989 (2009)

    Article  Google Scholar 

  30. Du, L.B., Lowery, A.J.: Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems. Opt. Express 18(16), 17075 (2010)

    Article  Google Scholar 

  31. Godard, D.N.: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 28, 1867 (1980)

    Article  Google Scholar 

  32. Sethares, W., Rey, G., Johnson, C.: Approaches to blind equalization of signals with multiple modulus. In: International Conference on Acoustics, Speech, and Signal Processing (IEEE), pp. 972–975 (1989)

  33. Chien, H.C., Jia, Z., Yu, J.: 256-Gb/s single-carrier PM-256QAM implementation using coordinated DD-LMS and CMA equalization. In: 2015 European Conference on Optical Communication (ECOC), pp. 1–3 (2015)

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Electronics and Communication Engineering, North-Eastern Hill University, Shillong, India, for providing the necessary infrastructure and facilities for this work. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiman Kakati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakati, D., Arya, S.C. A 640-Gbps, 15.2344-b/s/Hz full-duplex optical fiber/wireless single-channel coherent communication system using IQM-based DP-256-QAM and DSP techniques. Photon Netw Commun 39, 26–38 (2020). https://doi.org/10.1007/s11107-019-00875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00875-7

Keywords

Navigation