Skip to main content
Log in

Implementation of quantum repeater scheme based on non-identical quantum memories

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Quantum key distribution aims to distribute a secret key among distant parties linked by an optical fiber or free space. Unfortunately, the main problem which limits the long distance direct transmission of qubits is the exponential decay of the signal. This limit can be overcome by introducing quantum repeaters (QRs) between the two distant points. Quantum repeaters suggest a technique for establishing long distance quantum communication by the construction of entangled qubits among the end point of the channel, by dividing the channel into elementary links edged with quantum memory (QM) called nodes. Many schemes use identical QMs (Mastromattei in Assessing the practicality of a simple multi-node quantum repeater. M.Sc. thesis, University of Waterloo, ON, Canada, 2017). These schemes need QMs of long life times and high efficiencies which is not the practical case for QMs. To optimize these requirements, a multi-node sequential quantum repeater of a non-identical QMs is proposed here to interplay between the total channel efficiency and decoherence time T2 and the quantum memories life times and their efficiencies to enhance the execution of the quantum repeater (QR). The outcomes show that the interplay between the decoherence time and efficiency in non-identical QR improves the key rate as compared to that of the identical QR, the distance of the channel can be extended by using non-identical QMs repeater scheme since quantum bit error rate is decreased, and the cost of fabricating non-identical QMs repeater is reduced since we use most QMs with low life time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  Google Scholar 

  2. Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photonics 3(12), 706–714 (2009)

    Article  Google Scholar 

  3. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  Google Scholar 

  4. Munro, W., Stephens, A., Devitt, S., Harrison, K., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photonics 6(11), 777–781 (2012)

    Article  Google Scholar 

  5. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  Google Scholar 

  6. Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)

    Article  Google Scholar 

  7. Pirandola, S., Laurenza, R.: General benchmarks for quantum repeaters. arXiv preprint arXiv:1512.04945 (2015)

  8. Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Van Meter, R., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)

    Article  Google Scholar 

  9. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1995)

    Article  MathSciNet  Google Scholar 

  10. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  Google Scholar 

  11. Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777 (2012)

    Article  Google Scholar 

  12. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)

    Article  Google Scholar 

  13. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  Google Scholar 

  14. Luong, D., Jiang, L., Kim, J., Lutkenhaus, N.: Overcoming lossy channel bounds using a single quantum repeater node. Appl. Phys. B 122(4), 1–10 (2016)

    Article  Google Scholar 

  15. Krovi, H., Guha, S., Dutton, Z., Slater, J.A., Simon, C., Tittel, W.: Practical quantum repeaters with parametric down-conversion sources. Appl. Phys. B 122(3), 1–8 (2016)

    Article  Google Scholar 

  16. Song, G.Z., Zhou Wu, F., Zhang, M., Yang, G.J.: Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source. Scientific Reports 6, 28744 (2016)

    Article  Google Scholar 

  17. Rozpdek, F., et al.: Parameter regimes for a single sequential quantum repeater. Quantum Sci. Technol. 3, 034002 (2018)

    Article  Google Scholar 

  18. Goodenough, K., Elkouss, D., Wehner, S.: Assessing the performance of quantum repeaters for all phase-insensitive gaussian bosonic channels. New J. Phys. 18(6), 063005 (2016)

    Article  Google Scholar 

  19. Mastromattei, C.: Assessing the practicality of a simple multi-node quantum repeater. M.Sc. thesis, University of Waterloo, ON, Canada (2017)

  20. Simon, C., et al.: Quantum memories. The European Physical Journal D 58(1), 1–22 (2010)

    Article  MathSciNet  Google Scholar 

  21. Specht, H.P., Nolleke, C., Reiserer, A., Upho, M., Figueroa, E., Ritter, S., Rempe, G.: A single-atom quantum memory. Nature 473(7346), 190–193 (2011)

    Article  Google Scholar 

  22. Blinov, B.B., Moehring, D.L., Duan, L.-M., Monroe, C.: Observation of entanglement between a single trapped atom and a single photon. Nature 428(6979), 153–157 (2004)

    Article  Google Scholar 

  23. Volz, J., Weber, M., Schlenk, D., Rosenfeld, W., Vrana, J., Saucke, K., Kurtsiefer, C., Weinfurter, H.: Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  Google Scholar 

  24. Childress, L., Taylor, J.M., Srensen, A.S., Lukin, M.D.: Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)

    Article  Google Scholar 

  25. Vinay, S.E., Kok, P.: Practical repeaters for ultralong-distance quantum communication. Phys. Rev. A 95, 052336 (2017)

    Article  Google Scholar 

  26. Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., Monroe, C.: Manipulation and detection of a trapped Yb + ion hyperfine qubit. Phys. Rev. A 76, 052314 (2007)

    Article  Google Scholar 

  27. Graham, R.D., Chen, S.-P., Sakrejda, T., Wright, J., Zhou, Z., Blinov, B.B.: A system for trapping barium ions in a microfabricated surface trap. AIP Adv. 4(5), 057124 (2014)

    Article  Google Scholar 

  28. Harty, T.P., Allcock, D.T.C., Ballance, C.J., Guidoni, L., Janacek, H.A., Linke, N.M., Stacey, D.N., Lucas, D.M.: High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014)

    Article  Google Scholar 

  29. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323(5913), 486–489 (2009)

    Article  Google Scholar 

  30. Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., Monroe, C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)

    Article  Google Scholar 

  31. Kim, T., Maunz, P., Kim, J.: Efficient collection of single photons emitted from a trapped ion into a single-mode fiber for scalable quantum-information processing. Phys. Rev. A 84, 063423 (2011)

    Article  Google Scholar 

  32. Ballance, C.J., Schafer, V.M., Home, J.P., Szwer, D.J., Webster, S.C., Allcock, D.T.C., Linke, N.M., Harty, T.P., Audecraik, D.P.L., Stacey, D.N., Steane, A.M., Lucas, D.M.: Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes. Nature 528, 384–386 (2015)

    Article  Google Scholar 

  33. Tan, T.R., Gaebler, J.P., Lin, Y., Wan, Y., Bowler, R., Leibfried, D., Wineland, D.J.: Multi-element logic gates for trapped-ion qubits. Nature 528, 380–383 (2015)

    Article  Google Scholar 

  34. Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptology 18(2), 133–165 (2005)

    Article  MathSciNet  Google Scholar 

  35. Jobez, P., Usmani, I., Timoney, N., Laplane, C., Gisin, N., Afzelius, M.: Cavity-enhanced storage in an optical spin-wave memory. New J. Phys. 16, 083005 (2014)

    Article  Google Scholar 

  36. Cho, Y.W., Campbell, G.T., Everett, J.L., Bernu, J., Higginbottom, D.B., Cao, M.T., Geng, J., Robins, N.P., Lam, P.K., Buchler, B.C.: Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3(1), 100–107 (2016)

    Article  Google Scholar 

  37. Khodjasteh, K., Sastrawan, J., Hayes, D., Green, T.J., Biercuk, M.J., Viola, L.: Designing a practical high-fidelity long-time quantum memory. Nature Communications 4, 2045 (2013)

    Article  Google Scholar 

  38. Dudin, Y.O., Li, L., Kuzmich, A.: Light storage on the time scale of a minute. Phys. Rev. A 87, 031801(R) (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan N. Kadhim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, A.N., Hasan, J.A. & Alkhalidy, W.M. Implementation of quantum repeater scheme based on non-identical quantum memories. Photon Netw Commun 39, 39–46 (2020). https://doi.org/10.1007/s11107-019-00870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00870-y

Keywords

Navigation