Skip to main content
Log in

Ferromagnetic resonance isolator based on a photonic crystal structure with terahertz vortices

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A new terahertz isolator based on the ferromagnetic resonance effect is suggested and analyzed. A two-dimensional photonic crystal consisting of a square lattice of gallium arsenide rods has been employed in the design of the device. Incident electromagnetic waves interact with one magnetized ferrite rod and two stubs inserted in the photonic crystal structure, generating a vortex-like field profile in the ferrite rod. Electromagnetic signals propagating in the forward direction are transmitted with low insertion losses, while their propagation in the backward direction is not allowed due to the high losses of the ferrite rod operating at the ferromagnetic resonance regime. Computational simulations show that the operating bandwidth is equal to 0.87 GHz around the central frequency 106.6 GHz. In this frequency band, the insertion losses are lower than − 1.68 dB, the reflection levels are better than − 16 dB, and the isolation levels are greater than − 15 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takeda, H., John, S.: Compact optical one-way waveguide isolators for photonic-band-gap microchips. Phys. Rev. A 78(2), 023804 (2008)

    Article  Google Scholar 

  2. Wang, Z., Chong, Y., Joannopoulos, J.D., Soljačić, M.: Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100(1), 013905 (2008)

    Article  Google Scholar 

  3. Jalas, D., Petrov, A., Eich, M., Freude, W., Fan, S., Yu, Z., Baets, R., Popovic, M., Melloni, A., Joannopoulos, J.D., et al.: What is—and what is not—an optical isolator. Nat. Photonics 7(8), 579 (2013)

    Article  Google Scholar 

  4. Beguhn, S., Yang, X., Sun, N.: Wideband ferrite substrate integrated waveguide isolator using shape anisotropy. J. Appl. Phys. 115(17), 17E503 (2014)

    Article  Google Scholar 

  5. Bulgakov, E., Sadreev, A.: All-optical diode based on dipole modes of Kerr microcavity in asymmetric L-shaped photonic crystal waveguide. Opt. Lett. 39(7), 1787 (2014)

    Article  Google Scholar 

  6. Khanikaev, A.B., Mousavi, S.H., Tse, W.K., Kargarian, M., MacDonald, A.H., Shvets, G.: Photonic topological insulators. Nat. Mater. 12(3), 233 (2013)

    Article  Google Scholar 

  7. Nye, J., Berry, M.: Dislocations in wave trains. Proc. R. Soc. A. Mathematical. Phys. Eng. Sci. 336(1605), 165 (1974)

    Article  MathSciNet  Google Scholar 

  8. Ma, X., Pu, M., Li, X., Huang, C., Wang, Y., Pan, W., Zhao, B., Cui, J., Wang, C., Zhao, Z., Xiangang, L.: A planar chiral meta-surface for optical vortex generation and focusing. Sci. Rep. 5, 10365 (2015)

    Article  Google Scholar 

  9. Kamenetskii, E., Sigalov, M., Shavit, R.: Microwave whirlpools in a rectangular waveguide cavity with a thin ferrite disk. Phys. Rev. E 74(3), 036620 (2006)

    Article  Google Scholar 

  10. Dmitriev, V.: Symmetry properties of 2D magnetic photonic crystals with square lattice. Eur. Phys. J. Appl. Phys. 32(3), 159 (2005)

    Article  Google Scholar 

  11. Barybin, A.A., Dmitriev, V.A.: Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics. Rinton Press, Princeton (2002)

    MATH  Google Scholar 

  12. www.trans-techinc.com

  13. Helszajn, J.: The Stripline Circulator: Theory and Practice, vol. 206. Wiley, Hoboken (2008)

    Book  Google Scholar 

  14. www.comsol.com

  15. Dmitriev, V., Zimmer, D., Portela, G.: In: 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (IEEE), pp. 1–5 (2017)

  16. Rajab, K.Z., Naftaly, M., Linield, E.H., Nino, J.C., Arenas, D., Tanner, D., Mittra, R., Lanagan, M.: Broadband dielectric characterization of aluminum oxide (Al2O3). J. Microelectron. Electron. Packag. 5(1), 2 (2008)

    Article  Google Scholar 

  17. Harris, V., Chen, Z., Chen, Y., Yoon, S., Sakai, T., Gieler, A., Yang, A., He, Y., Ziemer, K., Sun, N.X., Vittoria, C.: Ba-hexaferrite films for next generation microwave devices. J. Appl. Phys. 99(8), 08M911 (2006)

    Article  Google Scholar 

  18. Wang, Z., Fan, S.: Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator. Photonics Nanostruct. Fundam. Appl. 4(3), 132 (2006)

    Article  Google Scholar 

  19. Thomson, D., Zilkie, A., Bowers, J.E., Komljenovic, T., Reed, G.T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.M., et al.: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Portela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portela, G., Dmitriev, V. & Zimmer, D. Ferromagnetic resonance isolator based on a photonic crystal structure with terahertz vortices. Photon Netw Commun 39, 47–53 (2020). https://doi.org/10.1007/s11107-019-00871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00871-x

Keywords

Navigation