Skip to main content

Advertisement

Log in

Real-world diffusion dynamics based on point process approaches: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Bursts in human and natural activities are highly clustered in time or space, suggesting that these activities are influenced by previous events within the social or natural system. Such bursty behavior in the real world conveys substantial information of underlying diffusion processes, which have been studied based on point process approaches in diverse scientific communities from online social media to criminology and epidemiology. However, universal components of real-world diffusion dynamics that cut across disciplines remain unexplored with a common overarching perspective. In this review, we introduce a wide range of diffusion processes from diverse research fields, define a taxonomy of common major factors in diffusion dynamics, interpret their diffusion models from the theoretical perspectives of point processes, and compare them with respect to universal effects on diffusion. These all can provide new insights on spatial and temporal bursty events capturing underlying diffusion dynamics. We expect that the comprehensive aspects of diffusion dynamics in the real world can motivate transdisciplinary research and provide contextual components of a fundamental framework for more generalizable diffusion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adar E, Adamic LA (2005) Tracking information epidemics in blogspace. In: Proceedings of the IEEE/WIC/ACM international conference on web intelligence, pp 207–214

  • Aggarwal CC, Abdelzaher T (2013) Social sensing. In: Managing and mining sensor data. Springer, pp 237–297

  • Ahmed A, Ho Q, Teo CH Eisenstein J, Smola A, Xing E (2011) Online inference for the infinite topic-cluster model: storylines from streaming text. In: Proceedings of the international conference on artificial intelligence and statistics, pp 101–109

  • Albala-Bertrand J-M (2000) Complex emergencies versus natural disasters: an analytical comparison of causes and effects. Oxford Dev Stud 28(2):187–204

    Article  Google Scholar 

  • Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47

    Article  MathSciNet  MATH  Google Scholar 

  • Anagnostopoulos A, Kumar R, Mahdian M (2008) Influence and correlation in social networks. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining

  • Anderson L (2011) Demystifying the arab spring: parsing the differences between tunisia, egypt, and libya. Foreign Aff 90(3):2–7

    Google Scholar 

  • Aral S, Muchnik L, Sundararajan A (2009) Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc Natl Acad Sci 106(51):21544–21549

    Article  Google Scholar 

  • Bacry E, Mastromatteo I, Muzy J-F (2015) Hawkes processes in finance. Mark Microstruct Liq 1(01):1550005

    Article  Google Scholar 

  • Bailey NTJ (1975) The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd., Glasgow

    MATH  Google Scholar 

  • Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the international conference on web search and web data mining. ACM, pp 65–74

  • Balthrop J, Forrest S, Newman MEJ, Williamson MM (2004) Technological networks and the spread of computer viruses. Science 304(5670):527–529

    Article  Google Scholar 

  • Barabási A-L (2005) The origin of bursts and heavy tails in human dynamics. Nature 435(7039):207–211

    Article  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  • Barabâsi A-L, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A Stat Mech Appl 311(3):590–614

    Article  MathSciNet  MATH  Google Scholar 

  • Barrat A, Barthlemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5):215–227

    Article  MATH  Google Scholar 

  • Bass FM (2004) Comments on “a new product growth for model consumer durables: the Bass model”. Manag Sci 50(12—supplement):1833–1840

    Article  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O (2013) The global distribution and burden of dengue. Nature 496(7446):504–507

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4):175–308

    Article  MathSciNet  MATH  Google Scholar 

  • Boender GJ, Hagenaars TJ, Bouma A, Nodelijk G, Elbers ARW, de Jong MCM, van Boven M (2007a) Risk maps for the spread of highly pathogenic avian influenza in poultry. PLOS Comput Biol 3(4):1–9, 04

    Article  MathSciNet  Google Scholar 

  • Boender GJ, Meester R, Gies E, De Jong MCM (2007b) The local threshold for geographical spread of infectious diseases between farms. Prev Vet Med 82(1):90–101

    Article  Google Scholar 

  • Boyack KW, Klavans R, Börner K (2005) Mapping the backbone of science. Scientometrics 64(3):351–374

    Article  Google Scholar 

  • Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M (2007) Transmission of influenza a in human beings. Lancet Infect Dis 7(4):257–265

    Article  Google Scholar 

  • Brillinger DR, Guttorp PM, Schoenberg FP (2014) Point processes, temporal. Wiley StatsRef: Statistics Reference Online

  • Budak C, Agrawal D, El Abbadi A (2011) Limiting the spread of misinformation in social networks. In: Proceedings of the international conference on world wide web. ACM, pp 665–674

  • Cha M, Perez J, Haddadi H (2009) Flash floods and ripples: the spread of media content through the blogosphere. In: Proceedings of the international AAAI conference on weblogs and social media, San Jose, USA. AAAI

  • Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? In: Proceedings of the international conference on world wide web. Int’l WWW Conf. Steering Committee, pp 925–936

  • Cheng J, Adamic LA, Kleinberg JM, Leskovec J (2016) Do cascades recur? In: Proceedings of the international conference on world wide web. Int’l WWW Conf. Steering Committee, pp 671–681

  • Cho Y-S, Galstyan A, Brantingham PJ, Tita G (2014) Latent self-exciting point process model for spatial-temporal networks. Discrete Contin Dyn Syst Ser B 19(5):1335–1354

    Article  MathSciNet  MATH  Google Scholar 

  • Christen P (2012) Data matching: concepts and techniques for record linkage, entity resolution, and duplicate detection. Springer, Berlin

    Book  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Article  MathSciNet  MATH  Google Scholar 

  • Colizza V, Vespignani A (2008) Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J Theor Biol 251(3):450–467

    Article  MathSciNet  MATH  Google Scholar 

  • Cox DR, Miller HD (1965) The theory of stochastic processes. Wiley, New York

    MATH  Google Scholar 

  • Crane R, Sornette D (2008) Robust dynamic classes revealed by measuring the response function of a social system. Proc Natl Acad Sci 105(41):15649–15653

    Article  Google Scholar 

  • Crowl TA, Crist TO, Parmenter RR, Belovsky G, Lugo AE (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 6(5):238–246

    Article  Google Scholar 

  • Daley DJ, Vere-Jones D (2007) An introduction to the theory of point processes: volume II: general theory and structure. Springer, Berlin

    MATH  Google Scholar 

  • Diggle PJ (2006) Spatio-temporal point processes, partial likelihood, foot and mouth disease. Stat Methods Med Res 15(4):325–336

    Article  MathSciNet  MATH  Google Scholar 

  • Doob JL (1953) Stochastic processes. Wiley, New York

    MATH  Google Scholar 

  • Dow PA, Adamic LA, Friggeri A (2013) The anatomy of large facebook cascades. In: Proceedings of the international AAAI conference on weblogs and social media, Boston, USA

  • Du N, Song L, Yuan M, Smola AJ (2012) Learning networks of heterogeneous influence. In: Proceedings of the annual conference on neural information processing systems, pp 2780–2788

  • Du N, Song L, Rodriguez MG, Zha H (2013a) Scalable influence estimation in continuous-time diffusion networks. In: Proceedings of the annual conference on neural information processing systems, pp 3147–3155

  • Du N, Song L, Woo H, Zha H (2013b) Uncover topic-sensitive information diffusion networks. In: Proceedings of the international conference on artificial intelligence and statistics, pp 229–237

  • Du N, Farajtabar M, Ahmed A, Smola AJ, Song L (2015a) Dirichlet–Hawkes processes with applications to clustering continuous-time document streams. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 219–228

  • Du N, Wang Y, He N, Sun J, Song L (2015b) Time-sensitive recommendation from recurrent user activities. In: Proceedings of the annual conference on neural information processing systems, pp 3492–3500

  • Du N, Dai H, Trivedi R, Upadhyay U, Gomez-Rodriguez M, Song L (2016) Recurrent marked temporal point processes: Embedding event history to vector. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1555–1564

  • Du N, Liang Y, Balcan M-F, Gomez-Rodriguez M, Zha H, Song L (2017) Scalable influence maximization for multiple products in continuous-time diffusion networks. J Mach Learn Res 18(2):1–45

    MathSciNet  MATH  Google Scholar 

  • Embrechts P, Liniger T, Lin L (2011) Multivariate hawkes processes: an application to financial data. J Appl Probab 48(A):367–378

    Article  MathSciNet  MATH  Google Scholar 

  • Falkinger J (2007) Attention economies. J Econ Theory 133(1):266–294

    Article  MATH  Google Scholar 

  • Farajtabar M, Wang Y, Rodriguez MG, Li S, Zha H, Song L (2015) Coevolve: a joint point process model for information diffusion and network co-evolution. In: Proceedings of the annual conference on neural information processing systems, pp 1954–1962

  • Filimonov V, Sornette D (2012) Quantifying reflexivity in financial markets: toward a prediction of flash crashes. Phys Rev E 85(5):056108

    Article  Google Scholar 

  • Fleming L, King C III, Juda AI (2007) Small worlds and regional innovation. Organ Sci 18(6):938–954

    Article  Google Scholar 

  • Gao S, Ma J, Chen Z (2015) Modeling and predicting retweeting dynamics on microblogging platforms. In: Proceedings of the international conference on web search and web data mining. ACM, pp 107–116

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in southern california, with aftershocks removed, poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Google Scholar 

  • Gerbier G, Bacro JN, Pouillot R, Durand B, Moutou F, Chadoeuf J (2002) A point pattern model of the spread of foot-and-mouth disease. Prev Vet Med 56(1):33–49

    Article  Google Scholar 

  • Ghosh R, Lerman K (2010) Predicting influential users in online social networks. arXiv preprint arXiv:1005.4882

  • Gomez-Rodriguez M, Schölkopf B (2012) Influence maximization in continuous time diffusion networks. In: Proceedings of the international conference on machine learning. Omnipress, pp 579–586

  • Gomez-Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1019–1028

  • Gomez-Rodriguez M, Balduzzi D, Schölkopf B (2011) Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the international conference on machine learning. Omnipress, pp 561–568

  • Hawkes AG (1971) Spectra of some self-exciting and mutually exciting point processes. Biometrika 58:83–90

    Article  MathSciNet  MATH  Google Scholar 

  • Hawkes AG, Oakes D (1974) A cluster process representation of a self-exciting process. J Appl Probab 11(03):493–503

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y, John A, Seligmann DD, Wang F (2012) What were the tweets about? topical associations between public events and twitter feeds. In: Proceedings of the international AAAI conference on weblogs and social media, Dublin, Ireland, AAAI

  • Iwata T, Shah A, Ghahramani Z (2013) Discovering latent influence in online social activities via shared cascade poisson processes. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 266–274

  • Jaax N, Jahrling P, Geisbert T, Geisbert J, Steele K, McKee K, Nagley D, Johnson E, Jaax G, Peters C (1995) Transmission of Ebola virus (Zaire strain) to uninfected control monkeys in a biocontainment laboratory. Lancet 346(8991):1669–1671

    Article  Google Scholar 

  • Jain DC, Vilcassim NJ (1991) Investigating household purchase timing decisions: a conditional hazard function approach. Mark Sci 10(1):1–23

    Article  Google Scholar 

  • Jurdak R, Elfes A, Kusy B, Tews A, Wen H, Hernandez E, Kottege N, Sikka P (2015a) Autonomous surveillance for biosecurity. Trends Biotechnol 33(4):201–207

    Article  Google Scholar 

  • Jurdak R, Zhao K, Liu J, AbouJaoude M, Cameron M, Newth D (2015b) Understanding human mobility from twitter. PLoS ONE 10(7):e0131469

    Article  Google Scholar 

  • Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 137–146

  • Kim M (2015) Dynamics of information diffusion. Ph.D. Thesis, The Australian National University

  • Kim M, Jurdak R (2017) Heterogeneous social signals capturing real-world diffusion processes. In: Proceedings of the international workshop on social sensing, Pittsburgh, USA. ACM

  • Kim M, Xie L, Christen P (2012) Event diffusion patterns in social media. In: Proceedings of the international AAAI conference on weblogs and social media, Dublin, Ireland. AAAI, pp 178–185

  • Kim M, Newth D, Christen P (2013a) Modeling direct and indirect influence across heterogeneous social networks. In: Proceedings of the ACM SIGKDD workshop on social network mining and analysis

  • Kim M, Newth D, Christen P (2013b) Modeling dynamics of diffusion across heterogeneous social networks: news diffusion in social media. Entropy 15(10):4215–4242

    Article  MathSciNet  MATH  Google Scholar 

  • Kim M, Newth D, Christen P (2013c) Modeling dynamics of meta-populations with a probabilistic approach: global diffusion in social media. In: Proceedings of the international conference on information and knowledge management. ACM, pp 489–498

  • Kim M, Newth D, Christen P (2014a) Uncovering diffusion in academic publications using model-driven and model-free approaches. In: Proceedings of the IEEE international conference on big data and cloud computing, Sydney, Australia. IEEE, pp 564–571

  • Kim M, Newth D, Christen P (2014b) Trends of news diffusion in social media based on crowd phenomena. In: Proceedings of the international conference on world wide web, pp 753–758

  • Kim M, Newth D, Christen P (2016) Macro-level information transfer in social media: reflections of crowd phenomena. Neurocomputing 172:84–99

    Article  Google Scholar 

  • Kim M, Jurdak R, Paini D (2017a) Modeling reflexivity of social systems in disease spread. arXiv preprint arXiv:1711.06359

  • Kim M, McFarland DA, Leskovec J (2017b) Modeling affinity based popularity dynamics. In: Proceedings of the international conference on information and knowledge management. ACM, pp 477–486

  • Kim M, Paini D, Jurdak R (2018) Causal inference in disease spread across a heterogeneous social system. arXiv preprint arXiv:1801.08133

  • Kingman JFC (1993) Poisson processes. Wiley, Hoboken

    MATH  Google Scholar 

  • Kiss IZ, Broom M, Craze PG, Rafols I (2010) Can epidemic models describe the diffusion of topics across disciplines? J Informetr 4(1):74–82

    Article  Google Scholar 

  • Kobayashi R, Lambiotte R (2016) Tideh: time-dependent hawkes process for predicting retweet dynamics. In: Proceedings of the international AAAI conference on weblogs and social media, pp 191–200

  • Kostka J, Oswald YA, Wattenhofer R (2008) Word of mouth: rumor dissemination in social networks. In: Proceedings of the international colloquium on structural information and communication complexity. Springer, pp 185–196

  • Kumar V, Krishnan TV (2002) Multinational diffusion models: an alternative framework. Market Sci 21(3):318–330

    Article  Google Scholar 

  • Kuno G (1995) Review of the factors modulating dengue transmission. Epidemiol Rev 17(2):321–335

    Article  Google Scholar 

  • Kupavskii A, Ostroumova L, Umnov A, Usachev S, Serdyukov P, Gusev G, Kustarev A (2012) Prediction of retweet cascade size over time. In: Proceedings of the international conference on information and knowledge management. ACM, pp 2335–2338

  • Kuperman M, Abramson G (2001) Small world effect in an epidemiological model. Phys Rev Lett 86(13):2909–2912

    Article  Google Scholar 

  • Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the international conference on world wide web. ACM, pp 591–600

  • Lerman K, Jones L (2007) Social browsing on flickr. In: Proceedings of the international AAAI conference on weblogs and social media, Colorado, USA. AAAI

  • Leskovec J, Singh A, Kleinberg J (2006) Patterns of influence in a recommendation network. In: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 380–389

  • Leskovec J, Adamic LA, Huberman BA (2007a) The dynamics of viral marketing. ACM Trans Web (TWEB) 1(1):5

    Article  Google Scholar 

  • Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007b) Cost-effective outbreak detection in networks. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 420–429

  • Leskovec J, McGlohon M, Faloutsos C, Glance N, Hurst M (2007c) Patterns of cascading behavior in large blog graphs. In: Proceedings of the international conference on data mining, Minneapolis, USA. SIAM, vol 7, pp 551–556

  • Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics of the news cycle. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 497–506

  • Liu S-Y, Baronchelli A, Perra N (2013) Contagion dynamics in time-varying metapopulation networks. Phys Rev E 87(3):032805

    Article  Google Scholar 

  • Luu MD, Lim EP, Hoang TA, Chua FCT (2012) Modeling diffusion in social networks using network properties. In: Proceedings of the international AAAI conference on weblogs and social media, Dublin, Ireland. AAAI, pp 218–225

  • Marks G, Crepaz N, Janssen RS (2006) Estimating sexual transmission of HIV from persons aware and unaware that they are infected with the virus in the USA. Aids 20(10):1447–1450

    Article  Google Scholar 

  • Mohler GO, Short MB, Brantingham PJ, Schoenberg FP, Tita GE (2011) Self-exciting point process modeling of crime. J Am Stat Assoc 106(493):100–108

    Article  MathSciNet  MATH  Google Scholar 

  • Møller J, Rasmussen JG (2005) Perfect simulation of Hawkes processes. Adv Appl Probab 37(03):629–646

    Article  MathSciNet  MATH  Google Scholar 

  • Morris M (1995) Spread of infectious disease. Epidemic models: their structure and relation to data 5:302

    MATH  Google Scholar 

  • Morse SS (2001) Factors in the emergence of infectious diseases. In: Plagues and politics. Springer, pp 8–26

  • Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D, Karesh WB, Carlos Zambrana-Torrelio W, Lipkin I, Daszak P (2012) Prediction and prevention of the next pandemic zoonosis. Lancet 380(9857):1956–1965

    Article  Google Scholar 

  • Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5(3):e74

    Article  Google Scholar 

  • Myers SA, Leskovec J (2014) The bursty dynamics of the twitter information network. In: Proceedings of the international conference on world wide web, pp 913–924

  • Myers SA, Zhu C, Leskovec J (2012) Information diffusion and external influence in networks. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, Beijing, China. ACM, pp 33–41

  • Nanjo KZ, Enescu B, Shcherbakov R, Turcotte DL, Iwata T, Ogata Y (2007) Decay of aftershock activity for Japanese earthquakes. J Geophys Res Solid Earth 112(B08309):83

    Google Scholar 

  • Newman MEJ (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102

    Article  Google Scholar 

  • Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Newman MEJ, Forrest S, Balthrop J (2002) Email networks and the spread of computer viruses. Phys Rev E 66(3):035101

    Article  Google Scholar 

  • Nov O, Naaman M, Ye C (2010) Analysis of participation in an online photo-sharing community: a multidimensional perspective. J Am Soc Inf Sci Technol 61(3):555–566

    Google Scholar 

  • Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83(401):9–27

    Article  Google Scholar 

  • Ogata Y, Abe K (1991) Some statistical features of the long-term variation of the global and regional seismic activity. Int Stat Rev 59(2):139–161

    Article  Google Scholar 

  • Ogata Y, Katsura K, Tanemura M (2003) Modelling heterogeneous space–time occurrences of earthquakes and its residual analysis. J R Stat Soc Ser C (Appl Stat) 52(4):499–509

    Article  MathSciNet  MATH  Google Scholar 

  • Parolo PDB, Pan RK, Ghosh R, Huberman BA, Kaski K, Fortunato S (2015) Attention decay in science. J Inf 9(4):734–745

    Google Scholar 

  • Porter A, Rafols I (2009) Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics 81(3):719–745

    Article  Google Scholar 

  • Prentice RL, Williams BJ, Peterson AV (1981) On the regression analysis of multivariate failure time data. Biometrika 68:373–379

    Article  MathSciNet  MATH  Google Scholar 

  • Read JM, Eames KTD, John Edmunds W (2008) Dynamic social networks and the implications for the spread of infectious disease. J R Soc Interface 5(26):1001–1007

    Article  Google Scholar 

  • Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 61–70

  • Rodriguez MG, Leskovec J, Schölkopf B (2013) Modeling information propagation with survival theory. In: Proceedings of the international conference on machine learning, pp 666–674

  • Roehner BM, Sornette D, Andersen JV (2004) Response functions to critical shocks in social sciences: an empirical and numerical study. Int J Mod Phys C 15(06):809–834

    Article  MATH  Google Scholar 

  • Rogers EM (1962) Diffusion of innovations. Free Press of Glencoe, New York

    Google Scholar 

  • Romero DM, Meeder B, Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the international conference on world wide web, Hyderabad, India, pp 695–704

  • Ross SM (2013) Applied probability models with optimization applications. Courier Corporation, Chelmsford

    Google Scholar 

  • Roth A, Mercier A, Lepers C, Hoy D, Duituturaga S, Benyon E, Guillaumot L, Souares Y (2014) Concurrent outbreaks of dengue, chikungunya and Zika virus infections—an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveill 19(41):20929

    Article  Google Scholar 

  • Schilling MA, Phelps CC (2007) Interfirm collaboration networks: the impact of large-scale network structure on firm innovation. Manag Sci 53(7):1113–1126

    Article  MATH  Google Scholar 

  • Shahzamal MD, Jurdak R, Arablouei R, Kim M, Thilakarathna K, Mans B (2017) Airborne disease propagation on large scale social contact networks. In: Proceedings of the international workshop on social sensing, Pittsburgh, USA. ACM

  • Shen H, Wang D, Song C, Barabási A-L (2014) Modeling and predicting popularity dynamics via reinforced poisson processes. In: AAAI

  • Short MB, Bertozzi AL, Brantingham PJ (2010) Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression. SIAM J Appl Dyn Syst 9(2):462–483

    Article  MathSciNet  MATH  Google Scholar 

  • Simma A, Jordan MI (2010) Modeling events with cascades of poisson processes. In: Proceedings of the international conference on uncertainty in artificial intelligence. AUAI Press, pp 546–555

  • Sinatra R, Deville P, Szell M, Wang D, Barabási A-L (2015) A century of physics. Nat Phys 11(10):791–796

    Article  Google Scholar 

  • Snyder DL, Miller MI (2012) Random point processes in time and space. Springer, Berlin

    Google Scholar 

  • Stein RS (1999) The role of stress transfer in earthquake occurrence. Nature 402(6762):605–609

    Article  Google Scholar 

  • Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In: Proceedings of the IEEE international conference on social computing. IEEE, pp 177–184

  • Takada H, Jain D (1991) Cross-national analysis of diffusion of consumer durable goods in Pacific Rim countries. J Mark 55(2):48–54

    Article  Google Scholar 

  • Uzzi B (1997) Social structure and competition in interfirm networks: the paradox of embeddedness. Adm Sci Q 42(1):35–67

    Article  Google Scholar 

  • Van House NA (2007) Flickr and public image-sharing: distant closeness and photo exhibition. In: Proceedings of the ACM chi conference on human factors in computing systems. ACM, pp 2717–2722

  • Van Noorden R (2015) Interdisciplinary research by the numbers. Nature 525(7569):306–307

    Article  Google Scholar 

  • Vázquez A, Oliveira JG, Dezsö Z, Goh K-I, Kondor I, Barabási A-L (2006) Modeling bursts and heavy tails in human dynamics. Phys Rev E 73(3):036127

    Article  Google Scholar 

  • Ver Steeg G, Galstyan A (2013) Information-theoretic measures of influence based on content dynamics. In: Proceedings of the international conference on web search and web data mining, Rome, Italy. ACM, pp 3–12

  • Victor JD (2006) Approaches to information-theoretic analysis of neural activity. Biol Theory 1(3):302–316

    Article  Google Scholar 

  • Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516

    Article  Google Scholar 

  • Wang P, González MC, Hidalgo CA, Barabási A-L (2009) Understanding the spreading patterns of mobile phone viruses. Science 324(5930):1071–1076

    Article  Google Scholar 

  • Wang Z, Sun L, Chen X, Zhu W, Liu J, Chen M, Yang S (2012) Propagation-based social-aware replication for social video contents. In: Proceedings of the ACM international conference on multimedia. ACM, pp 29–38

  • Wang D, Song C, Barabási A-L (2013) Quantifying long-term scientific impact. Science 342(6154):127–132

    Article  Google Scholar 

  • Wang Y, Xie B, Du N, Song L (2016) Isotonic hawkes processes. In: Proceedings of the international conference on machine learning, pp 2226–2234

  • Wang Y, Williams G, Theodorou E, Song L (2017a) Variational policy for guiding point processes. In: Proceedings of the international conference on machine learning, pp 3684–3693

  • Wang Y, Ye X, Zha H, Song L (2017b) Predicting user activity level in point processes with mass transport equation. In: Proceedings of the annual conference on neural information processing systems, pp 1644–1654

  • Wang Y, Ye X, Zhou H, Zha H, Song L (2017c) Linking micro event history to macro prediction in point process models. In: Proceedings of the international conference on artificial intelligence and statistics, pp 1375–1384

  • WHO (2009) Dengue: guidelines for diagnosis, treatment, prevention and control. World Health Organization

  • Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92(6):1377–1390

    Article  Google Scholar 

  • Wu F, Huberman BA (2007) Novelty and collective attention. Proc Natl Acad Sci 104(45):17599–17601

    Article  Google Scholar 

  • Yang J, Leskovec J (2011) Patterns of temporal variation in online media. In: Proceedings of the international conference on web search and web data mining. ACM, pp 177–186

  • Yang S-H, Zha H (2013) Mixture of mutually exciting processes for viral diffusion. In: Proceedings of the international conference on machine learning, pp 1–9

  • Yavaş M, Yücel G (2014) Impact of homophily on diffusion dynamics over social networks. Soc Sci Comput Rev 32(3):354–372

    Article  Google Scholar 

  • Zelner JL, Lopman BA, Hall AJ, Ballesteros S, Grenfell BT (2013) Linking time-varying symptomatology and intensity of infectiousness to patterns of norovirus transmission. PLoS ONE 8(7):e68413

    Article  Google Scholar 

  • Zhang K, Jurdak R, Arablouei R (2017a) Predicting prevalence of influenza-like illness in Australia from geo-tagged tweets. In: Proceedings of the international conference on world wide web, pp 1327–1334

  • Zhang K, Kim M, Jurdak R, Paini D (2017b) Predictability of irregular human mobility. arXiv preprint arXiv:1709.08486

  • Zhao Q Erdogdu MA, He HY, Rajaraman A, Leskovec J (2015) Seismic: a self-exciting point process model for predicting tweet popularity. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1513–1522

  • Zhu W, Guan J (2013) A bibliometric study of service innovation research: based on complex network analysis. Scientometrics 94(3):1195–1216

    Article  Google Scholar 

  • Zika—epidemiological report brazil. Technical report, Pan American Health Organization/World Health Organization (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minkyoung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Paini, D. & Jurdak, R. Real-world diffusion dynamics based on point process approaches: a review. Artif Intell Rev 53, 321–350 (2020). https://doi.org/10.1007/s10462-018-9656-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-018-9656-9

Keywords

Navigation