Skip to main content
Log in

Increasing the Production Efficiency of Potato with Plant Growth Retardants

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The vigorous growth phenotype of ‘Bondi’ is characteristic of high endogenous gibberellins, making it ideal for evaluating the efficacy of gibberellin biosynthesis inhibitors to improve allometric partitioning and production efficiency in potato. Foliar applications of prohexadione-calcium decreased foliar growth with no effects on tuber number, size, or yield. In contrast, when applied pre-tuberization, paclobutrazol decreased maximum foliar growth from 91 to 63 MT ha−1, increased tubers plant−1 from 6.4 to 8.9, and decreased average tuber fresh weight from 296 to 188 g tuber−1 with no reduction in tuber yield, which effectively increased the harvest index. However, when applied post-tuberization, PBZ reduced maximum foliar growth from 91 to 72 MT ha−1 with no effects on tuber number, size, or yield. Paclobutrazol can alter source/sink relationships in potato to increase production efficiency and this may translate to reduced agronomic inputs. Application timing and concentration are important for modulating tuber set and size.

Resumen

El fenotipo de crecimiento vigoroso de “Bondi” es característico de altas giberelinas endógenas, que lo hacen ideal para evaluar la eficacia de los inhibidores de la biosíntesis de giberelinas para mejorar la partición alométrica y la eficiencia en la producción de papa. Aplicaciones foliares de calcio-prohexadione disminuyeron el crecimiento foliar sin efecto en número de tubérculos, tamaño o rendimiento. En contraste, cuando se aplicó en pre-tuberización, el paclobutrazol disminuyó el máximo crecimiento foliar de 91 a 63 MT ha-1, aumentó los tubérculos por planta-1 de 6.4 a 8.9, y disminuyó el promedio del peso fresco de tubérculo de 296 a 188 g tubérculo-1 sin reducción en rendimiento de tubérculo, el cual incrementó efectivamente el índice de cosecha. No obstante, cuando se aplicó en la post-tuberización, PBZ redujo el máximo crecimiento foliar de 91 a 72 MT ha-1 sin efectos en el número de tubérculos, tamaño o rendimiento. El paclobutrazol puede alterar las relaciones fuente/demanda en papa para aumentar la eficiencia de producción y esto pudiera traducirse en la reducción de los insumos agronómicos. La calendarización en la aplicación, y la concentración, son importantes para modular el amarre y tamaño de tubérculo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arpiwi, N.L. 2003. The application of novel methods for increasing the yield of small round seed potatoes (Solanum tuberosum L.) varieties Atlantic and granola. School of Plant Biology: MS Thesis, University of Western Australia.

    Google Scholar 

  • Beam, J.B., and S.D. Askew. 2007. Fate of prohexadione calcium in annual bluegrass (Poa annua) and three turfgrasses. Weed Science 55: 541–545.

    Article  CAS  Google Scholar 

  • Binenbaum, J., R. Weinstain, and E. Shani. 2018. Gibberellin localization and transport in plants. Trends in Plant Science 23: 410–421.

    Article  CAS  Google Scholar 

  • Blauer, J.M., L.O. Knowles, and N.R. Knowles. 2013. Manipulating stem number, tuber set and size distribution in specialty potato cultivars. American Journal of Potato Research 90: 470–496.

    Article  Google Scholar 

  • Bolotova, Y., and P.E. Patterson. 2009. An analysis of contracts in the Idaho processing-potato industry. Journal of Food Distribution Research 40: 32–38.

    Google Scholar 

  • Bömke, C., and B. Tudzynski. 2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70: 1876–1893.

    Article  Google Scholar 

  • Brown, R.G.S., H. Kawaide, Y. Yang, W. Rademacher, and Y. Kamiya. 1997. Daminozide and prohexadione have similar modes of action as inhibitors of the late stages of gibberellin metabolism. Physiologia Plantarum 101: 309–313.

    Article  CAS  Google Scholar 

  • Caldiz, D.O., A. Clúa, J. Beltrano, and S.D. Tenenbaum. 1998. Ground cover, photosynthetic rate and tuber yield of potato (Solanum tuberosum L.) crops from seed tubers with different physiological age modified by foliar applications of plant growth regulators. Potato Research 41: 175–185.

    Article  Google Scholar 

  • Carrera, E., S.D. Jackson, and S. Prat. 1999. Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato. Plant Physiology 119: 765–773.

    Article  CAS  Google Scholar 

  • Carrera, E., J. Bou, J.L. Garcia-Martinez, and S. Prat. 2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. The Plant Journal 22 (3): 247–256.

    Article  CAS  Google Scholar 

  • Davière, J., and P. Achard. 2013. Gibberellin signaling in plants. Development 140: 1147–1151.

    Article  Google Scholar 

  • Dean, C.J., L.O. Knowles, and N.R. Knowles. 2018. Efficacy of seed aging and gibberellin treatments for manipulating apical dominance, tuber set and size distribution of cv. Shepody. American Journal of Potato Research 95: 526–538.

    Article  CAS  Google Scholar 

  • Evans, J.R., R.R. Evans, and C.L. Regusci. 1999. Mode of action, metabolism, and uptake of BAS 125W, prohexadione-calcium. HortScience 34: 1200–1201.

    Article  CAS  Google Scholar 

  • Gonzalez, N., S. De Bodt, R. Sulpice, Y. Jikumaru, E. Chae, S. Dhondt, T. Van Daele, L. De Milde, D. Weigel, Y. Kamiya, M. Stitt, G.T. Beemster, and D. Inzé. 2010. Increased leaf size: Different means to an end. Plant Physiology 153: 1261–1279.

    Article  CAS  Google Scholar 

  • Gould, W.A. 1999. Potato production, processing, and technology. Cambridge: Woodhead Publishing.

    Book  Google Scholar 

  • Greene, D.W. 1999. Tree growth management and fruit quality of apple trees treated with prohexadione-calciium (BAS 125). HortScience 34: 1209–1212.

    Article  CAS  Google Scholar 

  • Hannapel, D.J., P. Sharma, T. Lin, and A.K. Banerjee. 2017. The multiple signals that control tuber formation. Plant Physiology 174: 845–856.

    Article  CAS  Google Scholar 

  • Herman, D.J., L.O. Knowles, and N.R. Knowles. 2016. Differential sensitivity of genetically related potato cultivars to treatments designed to alter apical dominance, tuber set and size distribution. American Journal of Potato Research 93 (4): 331–349.

    Article  Google Scholar 

  • Hopkins, B.G., D.A. Horneck, M.J. Pavek, B.D. Geary, N.L. Olsen, J.W. Ellsworth, G.D. Newberry, J.S. Miller, R.E. Thornton, and G.W. Harding. 2007. Evaluation of potato production best management practices. American Journal of Potato Research 84: 19–27.

    Article  Google Scholar 

  • Huang, S., A.S. Raman, J.E. Ream, H. Fujiwara, R.E. Cerny, and S.M. Brown. 1998. Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiology 118: 773–781.

    Article  CAS  Google Scholar 

  • Ilias, I., G. Ouzounidou, A. Giannakoula, and P. Papadopoulou. 2007. Effects of gibberellic acid and prohexadione-calcium on growth, chlorophyll fluorescence and quality of okra plant. Biologia Plantarum 51: 575–578.

    Article  CAS  Google Scholar 

  • Kloosterman, B., and C. Bachem. 2014. Tuber development. In The potato: Botany, production and uses, ed. M.J. Pavek and R. Navarre, 45–63. Boston: CABI.

    Google Scholar 

  • Kloosterman, B., C. Navarro, G. Bijsterbosch, T. Lange, S. Prat, R.G.F. Visser, and C.W.B. Bachem. 2007. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. The Plant Journal 52: 362–373.

    Article  CAS  Google Scholar 

  • Kumar, D., and P.F. Wareing. 1974. Studies on tuberization of Solanum andigena. II. Growth hormones and tuberization. New Phytologist 73: 833–840.

    Article  CAS  Google Scholar 

  • Lang, N.S., R.G. Stevens, R.E. Thornton, W.L. Pan, and S. Victory. 1999. Nutrient management guide: Central Washington irrigated potatoes. Pullman: Washington State University Cooperative Extension.

    Google Scholar 

  • Lenfesty, C.M. 1967. Soil survey: Adams County, Washington. Washington D.C.

  • Lo, S., T.D. Ho, Y. Liu, M. Jiang, K. Hsieh, K. Chen, L. Yu, M. Lee, C. Chen, T. Huang, M. Kojima, H. Sakakibara, L. Chen, and S. Yu. 2017. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology 15: 850–864.

    Article  CAS  Google Scholar 

  • Mabvongwe, O., B.T. Manenji, M. Gwazane, and M. Chandiposha. 2016. The effect of paclobutrazol application time and variety on growth, yield, and quality of potato (Solanum tuberosum L.). advances in agriculture 2016: https://doi.org/10.1155/2016/1585463.

    Article  Google Scholar 

  • Oliveira, J.S. 2015. Growth and development of potato (Solanum tuberosum L.) crops after different cool season storage. PhD dissertation, Lincoln University, Department of Agricultural Sciences.

  • Proebsting, W.M., P. Hedden, M.J. Lewis, S.J. Croker, and L.N. Proebsting. 1992. Gibberellin concentration and transport in genetic lines of pea. Plant Physiology 100: 1354–1360.

    Article  CAS  Google Scholar 

  • Rademacher, W. 2000. Growth retardants: Effects of gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Molecular Biology 51: 501–531.

    Article  CAS  Google Scholar 

  • Rademacher, W. 2016. Chemical regulators of gibberellin status and their application in plant production. Annual Plant Reviews 49: 359–403.

    Article  CAS  Google Scholar 

  • Rebetzke, G.J., M.H. Ellis, D.G. Bonnett, B. Mickelson, A.G. Condon, and R.A. Richards. 2012. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Research 126: 87–96.

    Article  Google Scholar 

  • Schreiber, A., A. Jensen, S.I. Rondon, E.J. Wenninger, and S. Reitz. 2018. Integrated pest management guidelines for insects and mites in Idaho, Oregon, and Washington potatoes. http://www.nwpotatoresearch.com/wp-content/uploads/2018/07/PNW-Potato-IPM-2018-Final-for-web.pdf. Accessed 19 April 2019.

  • Sharma, N., N. Kaur, and A.K. Gupta. 1998. Effects of gibberellic acid and chlorocholine chloride on tuberization and growth of potato (Solanum tuberosum L). J. Sci Food Agric 78: 466–470.

    Article  CAS  Google Scholar 

  • Smith, O.E., and L. Rapaport. 1969. Gibberellins, inhibitors, and tuber formation in the potato (Solanum tuberosum). Am Potato J 46: 185–191.

    Article  CAS  Google Scholar 

  • Tekalign, T., and P.S. Hammes. 2005. Growth and biomass production in potato grown in the hot tropics as influenced by paclobutrazol. Plant Growth Regulation 45: 37–46.

    Article  CAS  Google Scholar 

  • Weeda, S.M., G.N.M. Kumar, and N.R. Knowles. 2009. Developmentally linked changes in proteases and protease inhibitors suggest a role for potato multicystatin in regulating protein content of potato tubers. Planta 230: 73–84.

    Article  CAS  Google Scholar 

  • Wohleb, C.H., N.R. Knowles, and M.J. Pavek. 2014. Plant growth and development. In the potato: Botany, production and uses, eds. D.A. Navarre and M.J. Pavek, Boston: CABI Press, ch 5 pp. 64–82.

  • Xu, X., A.M. van Lammeren, E. Verneer, and D. Vreugdenhil. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology 117: 575–584.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the USDA Specialty Crop Block Grant program through the Washington State Department of Agriculture, and the Northwest Potato Research Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Richard Knowles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, G.D., Knowles, L.O. & Knowles, N.R. Increasing the Production Efficiency of Potato with Plant Growth Retardants. Am. J. Potato Res. 97, 88–101 (2020). https://doi.org/10.1007/s12230-019-09759-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-019-09759-y

Keywords

Navigation