Skip to main content
Log in

Synthesis and Characterization of Graphene Based Hybrid Ligands and Their Metal Complexes: Investigation of Chemosensor and Catalytic Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

It has been synthesized the graphene oxide-based hybrid ligands and their Cu(II), Co(II) and Ni(II) complexes. Firstly, GO was reacted with 3-(trimethoxysilyl)propylamine in ethanol and the obtained structure was treated with 2,6-diformyl-4-bromophenol and 2,6-diformyl-4-tert-butylphenol in order to obtain the hybrid ligands HL1 and HL2. The synthesized hybrid ligands and their metal complexes have been and characterized by using FTIR, UV–vis., XRD, EDX, SEM, TEM, cyclic voltammetry, TG/DTA and ICP-OES techniques. Catalytic activities of Cu(II), Co(II) and Ni(II) complexes of the synthesized ligands have been investigated in the oxidation of 2-methyl naphthalene (2MN) to 2-methyl-1,4-naphthoquinone (vitamin K3). The chemosensing behaviours of the hybrid ligands were also researched by using UV–vis. technique upon addition of various metal ions such as Na(I), K(I), Cd(II), Co(II), Cu(II), Hg(II), Ni(II), Zn(II), Al(III), Cr(III), Fe(III), and Mn(II) in (1:5 V) ratio in MeOH. The UV–vis. spectra of free hybrid materials show one absorption band at 257 nm possibly due to π–π* transitions in hybrid ligands. While added the metal cations on the ligand dispersions as Cu(II) and Fe(III) (0.1 mM) (1:5 V) ratios in MeOH, a new absorption bands were appeared at different regions in 275–325, 300–375 nm, respectively, because of the complexation between the hybrid materials and the metal ions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2010)

    Article  CAS  Google Scholar 

  2. G.K. Dimitrakakis, E. Tylianakis, G.E. Foudakis, Pillared graphene, a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8, 3166–3170 (2008)

    Article  CAS  Google Scholar 

  3. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy, Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011)

    Article  CAS  Google Scholar 

  4. M. Liang, L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19, 5871–5878 (2009)

    Article  CAS  Google Scholar 

  5. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22, 5306–5313 (2010)

    Article  CAS  Google Scholar 

  6. P. Avouris, C. Dimitrakopoulos, Graphene, synthesis and applications. Mater. Today 15(3), 86–97 (2012)

    Article  CAS  Google Scholar 

  7. P.V. Kamat, Quantum dot solar cells, semiconductor nanocrystals as light harvesters. J. Phys. Chem. 112, 18737–18753 (2008)

    Article  CAS  Google Scholar 

  8. Y. Cui, Q.Y. Cheng, H. Wu, Z. Wei, B.H. Han, Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors. Nanoscale 5, 8367–8374 (2013)

    Article  CAS  Google Scholar 

  9. L. Mao, K. Zhang, H.S.O. Chan, J.J. Wu, Surfactant-stabilized graphene/polyanilinenanofiber composites for high performance supercapacitor electrode. Mater. Chem. 22, 80–85 (2012)

    Article  CAS  Google Scholar 

  10. H.F. Xiang, Z.D. Li, K. Xie, J.Z. Jiang, J.J. Chen, P.C. Lian, J.S. Wu, Y. Yu, H.H. Wang, Graphene sheets as anode materials for Li-ion batteries, preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2, 6792–6799 (2012)

    Article  CAS  Google Scholar 

  11. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9(6), 2255–2259 (2009)

    Article  CAS  Google Scholar 

  12. Z.S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.M. Cheng, Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 21, 1756–1760 (2009)

    Article  CAS  Google Scholar 

  13. B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites, role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. 113, 7990–7995 (2000)

    Article  Google Scholar 

  14. M.S. Artiles, C.S. Rout, T.S. Fisher, Graphene-based hybrid materials and devices for biosensing. Adv. Drug Deliv. Rev. 63, 1352–1360 (2011)

    Article  CAS  Google Scholar 

  15. Y. Wang, Y. Shao, D. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)

    Article  CAS  Google Scholar 

  16. K. Ojha, O. Anjaneyulu, A.K. Ganguli, Graphene-based hybrid materials, synthetic approaches and properties. Curr. Sci. 107(3), 397–418 (2014)

    CAS  Google Scholar 

  17. A. Stergiou, G. Pagona, N. Tagmatarchis, Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions. Beilstein J. Nanotechnol 5, 1580–1589 (2014)

    Article  Google Scholar 

  18. Z.-B. Liu, Y.-F. Xu, X.-Y. Zhang, X.-L. Zhang, Y.-S. Chen, J.-G. Tian, Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B. 113, 9681–9686 (2009)

    Article  CAS  Google Scholar 

  19. U. Latif, L. Dickert, Graphene hybrid materials in gas sensing applications. Sensors 15, 30504–30524 (2015)

    Article  CAS  Google Scholar 

  20. P.T. Yin, S. Shah, M. Chhowalla, K.-B. Lee, Design, synthesis, and characterization of graphene−nanoparticle hybrid materials for bioapplications. Chem. Rev. 115, 2483–2531 (2015)

    Article  CAS  Google Scholar 

  21. R.A. Sheldon, J. Dakka, Heterogeneous catalytic oxidations in the manufacture of fine chemicals. Catal. Today 19, 215–245 (1994)

    Article  CAS  Google Scholar 

  22. W. Bonrath, T. Netscher, Catalytic processes in vitamins synthesis and production. Appl. Catal. A 280, 55–73 (2005)

    Article  CAS  Google Scholar 

  23. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  24. S. Uruş, Synthesis of Fe3O4@SiO2@OSi(CH2)3NHRN(CH2PPh2)2PdCl2 type nanocomposite complexes, highly efficient and magnetically-recoverable catalysts in vitamin K3 synthesis. Food Chem. 213, 336–343 (2016)

    Article  Google Scholar 

  25. S. Narayanan, K.V.V.S.B.S.R. Murthy, K.M. Reddy, N. Premchander, A novel and environmentally benign selective route for vitamin K3 synthesis. Appl. Catal. A, 228, 161–165 (2002).

    Article  CAS  Google Scholar 

  26. D.N.H. Tran, S. Kabiri, D. Losic, A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon 76, 193–202 (2014)

    Article  CAS  Google Scholar 

  27. Z. Xiong, Z. DaCheng, C. Yao, S.X. Zhong, M.Y. Wei, Electrochemical reduction of graphene oxide films, preparation, characterization and their electrochemical properties. Chin. Sci. Bull. 57, 3045–3050 (2012)

    Article  Google Scholar 

  28. J. Kowalski, J. Płoszynska, A. Sobkowiak, Iron(III)-induced activation of hydrogen peroxide for oxidation of 2-methylnaphthalene in glacial acetic acid. Catal. Commun. 4, 603–608 (2003)

    Article  CAS  Google Scholar 

  29. M. Florea, R.S. Marin, F.M. Palaşanu, F. Neatu, V.I. Pârvulescu, Mesostructured vanadia-alumina catalysts for the synthesis of vitamin K3. Catal. Today 254, 29–35 (2015)

    Article  CAS  Google Scholar 

  30. O.A. Zalomaeva, O.A. Kholdeeva, A.B.C.R. Sorokin, preparation of 2-methyl-1,4- naphthoquinone (vitamin K3) by catalytic oxidation of 2-methyl-1-naphthol in the presence of iron phthalocyanine supported catalyst. Comptes Rendus Chim. 10, 598–603 (2007)

    Article  CAS  Google Scholar 

  31. K. Yube, K. Mae, Efficient oxidation of aromatics with peroxides under severe conditions using a microreaction system. Chem. Eng. Technol. 28, 331–336 (2005)

    Article  CAS  Google Scholar 

  32. O.A. Anunziata, A.R. Beltramone, J. Cussa, Studies of vitamin K3 synthesis over Ti-containing mesoporous material. Appl. Catal. A 270, 77–85 (2004)

    Article  CAS  Google Scholar 

  33. L. Wang, G. Yin, Y. Yang, X. Zhang, Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks. React. Kinet. Mech Catal 128, 193–204 (2019)

    Article  CAS  Google Scholar 

  34. X. Zhang, X. Lv, F. Bi, G. Lu, Y. Wang, Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: the influence of MOFs precursors. Mol Catal, (in press) https://doi.org/10.1016/j.mcat.2019.110701.

  35. X. Zhang, X. Zhang, L. Song, F. Hou, Y. Yang, Y. Wang, N. Liu, Enhanced catalytic performance for CO oxidation and preferential CO oxidation over CuO/CeO2 catalysts synthesized from metal organic framework: effects of preparation methods. Int. J. Hydrogen Energy 43(39), 18279–18288 (2018)

    Article  CAS  Google Scholar 

  36. X. Zhang, X. Lv, X. Shi, Y. Yang, Y. Yang, Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air. J. Colloid Interface Sci. 539, 152–160 (2019)

    Article  CAS  Google Scholar 

  37. N. Liu, W. Huang, X. Zhang, L. Tang, L. Wang, Y. Wang, M. Wu, Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl. Catal. B 221, 119–128 (2018)

    Article  CAS  Google Scholar 

  38. M.A. Deshmukh, M.D. Shirsat, A. Ramanaviciene, A. Ramanavicius, Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing (review). Crit. Rev. Anal. Chem. 48, 293–304 (2018)

    Article  CAS  Google Scholar 

  39. M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim. Acta 259, 930–938 (2018)

    Article  CAS  Google Scholar 

  40. M.A. Deshmukh, H.K. Patil, G.A. Bodkhe, M. Yasuzawa, P. Koinkar, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, EDTA-modified PANI/SWNTs nanocomposite for differential pulse voltammetry based determination of Cu(II) ions. Sens. Actuators B 260, 331–338 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serhan Uruş or Mehmet Tümer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubair, R.M., Karabörk, M., Uruş, S. et al. Synthesis and Characterization of Graphene Based Hybrid Ligands and Their Metal Complexes: Investigation of Chemosensor and Catalytic Properties. J Inorg Organomet Polym 30, 2774–2788 (2020). https://doi.org/10.1007/s10904-019-01428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01428-1

Keywords

Navigation