Skip to main content
Log in

Nanostructural Evolution and Deformation Mechanisms of Severely Deformed Pure Fe

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Microstructural evolution and mechanical behavior of commercially pure Fe during severe deformation by cold caliber rolling followed by wire drawing were investigated using transmission electron microscopy and electron backscatter diffraction. Following by a drastic increment of strength in the early stage of deformation, shear banding as a softening mechanism leads to decreasing of work hardening rate and finally a steady state situation at medium strains, creating a bimodal microstructure. Increasing strain beyond 3 is associated with increasing the rate of work hardening and refinement of the material. Severely deformed Fe after cold caliber rolling to equivalent strain of 4.5 evolves from lamellar ultrafine-grained structure. Additional deformation by drawing results in more homogeneous structure and activates new mechanisms. A dynamic recovery appears at severe strains through mechanically assisted triple junction motion. It is found that suppression of triple junction motion enhances the refinement of microstructure and the strength, such that the highly deformed Fe after equivalent strain of 7 has a nano/ultrafine-grained structure combined with a high tensile strength of 1115 MPa.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, J. Mater. Res. 17, 5 (2002)

    CAS  Google Scholar 

  2. Y.M. Wang, E. Ma, Acta Mater. 52, 1699 (2004)

    CAS  Google Scholar 

  3. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, CIRP Ann. - Manuf. Technol. 57, 716 (2008)

    Google Scholar 

  4. R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881 (2006)

    CAS  Google Scholar 

  5. A.P. Zhilyaev, T.G. Langdon, Prog. Mater Sci. 53, 893 (2008)

    CAS  Google Scholar 

  6. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999)

    CAS  Google Scholar 

  7. R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, Hoboken, 2013). https://doi.org/10.1002/9781118742679

    Book  Google Scholar 

  8. S.H. Whang, Nanostructured metals and alloys (Woodhead Publishing Limited, Sawston, 2011)

    Google Scholar 

  9. S. Torizuka, E. Muramatsu, S.V.S. Narayana Murty, K. Nagai, Scr. Mater. 55, 751 (2006)

    CAS  Google Scholar 

  10. S. Torizuka, A. Ohmori, S.V.S. Narayana Murty, K. Nagai, Scr. Mater. 54, 563 (2006)

    CAS  Google Scholar 

  11. N. Forouzanmehr, M. Nili-Ahmadabadi, M. Samadi Khoshkhoo, Mater. Sci. Eng., A 650, 264 (2016)

    CAS  Google Scholar 

  12. G. Krállics, J. Gubicza, Z. Bezi, I. Barkai, J. Mater. Process. Technol. 214, 1307 (2014)

    Google Scholar 

  13. C. Phongphisutthinan, H. Tezuka, T. Sato, S. Takamori, Y. Ohsawa, Mater. Trans. 53, 885 (2012)

    CAS  Google Scholar 

  14. H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, A. Mirsepasi, C. Zamani, Met. Mater. Int. 20, 201 (2014)

    CAS  Google Scholar 

  15. S. Torizuka, E. Muramastu, S.V.S.N. Murty, Mater. Sci. Forum 710, 19 (2012)

    CAS  Google Scholar 

  16. T. Inoue, F. Yin, Y. Kimura, Mater. Sci. Eng., A 466, 114 (2007)

    Google Scholar 

  17. Z. Yanushkevich, S.V. Dobatkin, A. Belyakov, R. Kaibyshev, Acta Mater. 136, 39 (2017)

    CAS  Google Scholar 

  18. M. Tikhonova, I. Shakhova, R. Kaibyshev, A. Belyakov, Mater. Sci. Forum 879, 1957 (2017)

    Google Scholar 

  19. P.J. Szabo, Mater. Charact. 66, 99 (2012)

    CAS  Google Scholar 

  20. N. Forouzanmehr, M. Nili-Ahmadabadi, I.O.P. Conf, Ser. Mater. Sci. Eng. 63, 012149 (2014)

    CAS  Google Scholar 

  21. J.A. Muñoz, O.F. Higuera, J.A. Benito, D. Bradai, T. Khelfa, R.E. Bolmaro, A.M. Jorge, J.M. Cabrera, Mater. Sci. Eng., A 740–741, 108 (2019)

    Google Scholar 

  22. R. Tejedor, K. Edalati, J.A. Benito, Z. Horita, J.M. Cabrera, Mater. Sci. Eng., A 743, 597 (2019)

    CAS  Google Scholar 

  23. N. Adachi, H. Sato, Y. Todaka, T. Suzuki, Procedia Manuf. 15, 1495 (2018)

    Google Scholar 

  24. N.I. Noskova, J. Alloys Compd. 435, 307 (2007)

    Google Scholar 

  25. K. Edalati, T. Fujioka, Z. Horita, Mater. Trans. 50, 44 (2009)

    CAS  Google Scholar 

  26. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, E. Ma, Acta Mater. 52, 1859 (2004)

    CAS  Google Scholar 

  27. V.M. Segal, Mater. Sci. Eng., A 406, 205 (2005)

    Google Scholar 

  28. V.M. Segal, Mater. Sci. Eng., A 338, 331 (2002)

    Google Scholar 

  29. T. Yu, N. Hansen, X. Huang, A. Godfrey, Mater. Res. Lett. 2, 37 (2014)

    Google Scholar 

  30. D.A. Hughes, N. Hansen, Acta Mater. 148, 374 (2018)

    CAS  Google Scholar 

  31. Y.B. Zhang, T. Yu, O.V. Mishin, Mater. Lett. 186, 102 (2017)

    CAS  Google Scholar 

  32. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103 (2000)

    CAS  Google Scholar 

  33. Q. Wei, D. Jia, K.T. Ramesh, E. Ma, Appl. Phys. Lett. 81, 1240 (2002)

    CAS  Google Scholar 

  34. B.Q. Han, E.J. Lavernia, F.A. Mohamed, Metall. Mater. Trans. A 35, 1343 (2004)

    Google Scholar 

  35. Y. Beygelzimer, Mech. Mater. 37, 753 (2005)

    Google Scholar 

  36. U. Andrade, M.A. Meyers, K.S. Vecchio, A.H. Chokshi, Acta Metall. Mater. 42, 3183 (1994)

    CAS  Google Scholar 

  37. M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, Q. Xue, Mater. Sci. Eng., A 317, 204 (2001)

    Google Scholar 

  38. D. Jia, K.T. Ramesh, E. Ma, Acta Mater. 51, 3495 (2003)

    CAS  Google Scholar 

  39. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, T.R. McNelley, Acta Mater. 51, 1307 (2003)

    CAS  Google Scholar 

  40. Q. Xue, I.T. Gray, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 2447 (2006)

    Google Scholar 

  41. T. Yu, N. Hansen, X. Huang, Mater. Sci. Forum 753, 485 (2013)

    Google Scholar 

  42. T. Yu, D.A. Hughes, N. Hansen, X. Huang, Acta Mater. 86, 269 (2015)

    CAS  Google Scholar 

  43. T. Yu, N. Hansen, X. Huang, Proc. R. Soc. A 467, 3039 (2011)

    CAS  Google Scholar 

  44. T. Yu, N. Hansen, X. Huang, Mater. Sci. Eng 89, 012014 (2015)

    Google Scholar 

  45. T. Yu, N. Hansen, X. Huang, A. Godfrey, in Proceedings of 35th Risoe International Symposium on Materials Science: New Frontiers of Nanometals, vol. 35, p. 493 (2014)

  46. F. Yan, H.W. Zhang, N.R. Tao, K. Lu, J. Mater. Sci. Technol. 27, 673 (2011)

    CAS  Google Scholar 

  47. T. Yu, N. Hansen, X. Huang, Acta Mater. 61, 6577 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. J. Eckert (Institute for Complex Materials, IFW Dresden, Germany) for providing access to the TEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Forouzanmehr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzanmehr, N., Jafarian, H.R., Samadi-khoshkhoo, M. et al. Nanostructural Evolution and Deformation Mechanisms of Severely Deformed Pure Fe. Met. Mater. Int. 27, 1798–1807 (2021). https://doi.org/10.1007/s12540-019-00575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00575-x

Keywords

Navigation