Skip to main content

Advertisement

Log in

MicroRNAs and Regeneration in Animal Models of CNS Disorders

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) are recently identified small RNA molecules that regulate gene expression and significantly influence the essential cellular processes associated with CNS repair after trauma and neuropathological conditions including stroke and neurodegenerative disorders. A number of specific miRNAs are implicated in regulating the development and propagation of CNS injury, as well as its subsequent regeneration. The review focuses on the functions of the miRNAs and their role in brain recovery following CNS damage. The article introduces a brief description of miRNA biogenesis and mechanisms of miRNA-induced gene suppression, followed by an overview of miRNAs involved in the processes associated with CNS repair, including neuroprotection, neuronal plasticity and axonal regeneration, vascular reorganization, neuroinflammation, and endogenous stem cell activation. Specific emphasis is placed on the role of multifunctional miRNA miR-155, as it appears to be involved in multiple neurorestorative processes during different CNS pathologies. In association with our own studies on miR-155, I introduce a new and unexplored approach to cerebral regeneration: regulation of brain tissue repair through a direct modulation of specific miRNA activity. The review concludes with discussion on the challenges and the future potential of miRNA-based therapeutic approaches to CNS repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NogoA:

Neurite outgrowth inhibitor

TGF-β:

Transforming growth factor beta

VEGF:

Vascular endothelial growth factor

VE:

Cadherin-vascular endothelial cadherin

TBI:

Traumatic brain injury

Rheb:

Ras homolog enriched in brain

mTOR:

Mammalian target of rapamycin

Rictor:

Rapamycin-insensitive companion of mammalian target of rapamycin

C/EBP-β:

CCAAT/enhancer-binding protein beta

BMP:

Bone morphogenetic protein

NO:

Nitric oxide

JAK:

Janus kinase

STAT:

Signal transducers and activators of transcription

SOCS:

Suppressor of cytokine signaling

SHIP:

Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase

LPS:

Lipopolysaccharide

References

  1. Sun W, Julie Li YS, Huang HD, Shyy JY, Chien S (2010) microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 12:1–27. https://doi.org/10.1146/annurev-bioeng-070909-105314

    Article  CAS  PubMed  Google Scholar 

  2. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–593. https://doi.org/10.1038/nsmb.2296

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2018) Metazoan microRNAs. Cell 173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wickens M, Takayama K (1994) RNA. Deviants–or emissaries. Nature 367(6458):17–18. https://doi.org/10.1038/367017a0

    Article  CAS  PubMed  Google Scholar 

  5. Ruvkun G, Wightman B, Ha I (2004) The 20 years it took to recognize the importance of tiny RNAs. Cell 116 (2 Suppl):S93–S96

    Article  CAS  PubMed  Google Scholar 

  6. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, Hatzimichael E, Kirino Y, Honda S, Lally M, Ramratnam B, Comstock CE, Knudsen KE, Gomella L, Spaeth GL, Hark L, Katz LJ, Witkiewicz A, Rostami A, Jimenez SA, Hollingsworth MA, Yeh JJ, Shaw CA, McKenzie SE, Bray P, Nelson PT, Zupo S, Van Roosbroeck K, Keating MJ, Calin GA, Yeo C, Jimbo M, Cozzitorto J, Brody JR, Delgrosso K, Mattick JS, Fortina P, Rigoutsos I (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA 112(10):E1106–E1115. https://doi.org/10.1073/pnas.1420955112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stahler C, Meese E, Keller A (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44(8):3865–3877. https://doi.org/10.1093/nar/gkw116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. https://doi.org/10.1146/annurev-biochem-060308-103103

    Article  CAS  PubMed  Google Scholar 

  10. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110. https://doi.org/10.1038/nrg2936

    Article  CAS  PubMed  Google Scholar 

  11. Kawamata T, Seitz H, Tomari Y (2009) Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 16(9):953–960. https://doi.org/10.1038/nsmb.1630

    Article  CAS  PubMed  Google Scholar 

  12. Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17(1):17–23. https://doi.org/10.1038/nsmb.1733

    Article  CAS  PubMed  Google Scholar 

  13. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  14. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86. https://doi.org/10.1038/nature05983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herrera-Carrillo E, Berkhout B (2017) Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res 45(18):10369–10379. https://doi.org/10.1093/nar/gkx779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22(20):2773–2785. https://doi.org/10.1101/gad.1705308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ratnadiwakara M, Mohenska M, Anko ML (2017) Splicing factors as regulators of miRNA biogenesis—links to human disease. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2017.10.008

    Article  PubMed  Google Scholar 

  18. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. https://doi.org/10.1038/nrg2843

    Article  CAS  PubMed  Google Scholar 

  19. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396–400. https://doi.org/10.1038/nrg1328

    Article  CAS  PubMed  Google Scholar 

  20. Bayraktar R, Van Roosbroeck K, Calin GA (2017) Cell-to-cell communication: microRNAs as hormones. Mol Oncol 11(12):1673–1686. https://doi.org/10.1002/1878-0261.12144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hohjoh H, Fukushima T (2007) Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene 391(1–2):39–44. https://doi.org/10.1016/j.gene.2006.11.018

    Article  CAS  PubMed  Google Scholar 

  22. Olsen L, Klausen M, Helboe L, Nielsen FC, Werge T (2009) MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats. Plos ONE 4(10):e7225. https://doi.org/10.1371/journal.pone.0007225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Narayan A, Bommakanti A, Patel AA (2015) High-throughput RNA profiling via up-front sample parallelization. Nat Methods 12(4):343–346. https://doi.org/10.1038/nmeth.3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu NK, Wang XF, Lu QB, Xu XM (2009) Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 219(2):424–429. https://doi.org/10.1016/j.expneurol.2009.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan YB, Sun ZL, Feng DF (2017) The role of microRNA in traumatic brain injury. Neuroscience 367:189–199. https://doi.org/10.1016/j.neuroscience.2017.10.046

    Article  CAS  PubMed  Google Scholar 

  26. Martinez B, Peplow PV (2017) MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury. Neural Regen Res 12(11):1749–1761. https://doi.org/10.4103/1673-5374.219025

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lei P, Li YH, Chen X, Yang SY, Zhang JN (2009) Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 1284:191–201. doi:https://doi.org/10.1016/J.Brainres.2009.05.074

    Article  CAS  PubMed  Google Scholar 

  28. Hu ZH, Yu DN, Almeida-Suhett C, Tu K, Marini AM, Eiden L, Braga MF, Zhu J, Li Z (2012) Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. Plos ONE 7 (6):e39357. https://doi.org/10.1371/journal.pone.0039357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sepramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP, Wang CW, Yong FL, Karolina DS, Kaur P, Liu FJ, Lim KY, Armugam A, Jeyaseelan K (2014) Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci 15(1):1418–1432. https://doi.org/10.3390/ijms15011418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vijayan M, Reddy PH (2016) Peripheral biomarkers of stroke: focus on circulatory microRNAs. Biochim Biophys Acta 1862(10):1984–1993. https://doi.org/10.1016/j.bbadis.2016.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Henshall DC (2014) MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr Opin Neurol 27(2):199–205. https://doi.org/10.1097/WCO.0000000000000079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raoof R, Jimenez-Mateos EM, Bauer S, Tackenberg B, Rosenow F, Lang J, Onugoren MD, Hamer H, Huchtemann T, Kortvelyessy P, Connolly NMC, Pfeiffer S, Prehn JHM, Farrell MA, O’Brien DF, Henshall DC, Mooney C (2017) Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 7(1):3328. https://doi.org/10.1038/s41598-017-02969-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez B, Peplow PV (2017) MicroRNAs in Parkinson’s disease and emerging therapeutic targets. Neural Regen Res 12(12):1945–1959. https://doi.org/10.4103/1673-5374.221147

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH (2016) microRNA Profiles in Parkinson’s Disease Prefrontal Cortex. Frontiers in aging neuroscience 8:36. https://doi.org/10.3389/fnagi.2016.00036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bekris LM, Lutz F, Montine TJ, Yu CE, Tsuang D, Peskind ER, Leverenz JB (2013) MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 18(5):455–466. https://doi.org/10.3109/1354750X.2013.814073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y (2013) Circulating miRNA biomarkers for Alzheimer’s disease. Plos ONE 8(7):e69807. https://doi.org/10.1371/journal.pone.0069807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nieto-Diaz M, Esteban FJ, Reigada D, Munoz-Galdeano T, Yunta M, Caballero-Lopez M, Navarro-Ruiz R, Del Aguila A, Maza RM (2014) MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 8:53. https://doi.org/10.3389/fncel.2014.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108(12):5003–5008. https://doi.org/10.1073/pnas.1019055108

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ekstrom K, Valadi H, Sjostrand M, Malmhall C, Bossios A, Eldh M, Lotvall J (2012) Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J Extracell Vesicles 1:18389. https://doi.org/10.3402/jev.v1i0.18389

    Article  CAS  Google Scholar 

  40. Blandford SN, Galloway DA, Moore CS (2018) The roles of extracellular vesicle microRNAs in the central nervous system. Glia 66(11):2267–2278. https://doi.org/10.1002/glia.23445

    Article  PubMed  Google Scholar 

  41. Kanninen KM, Bister N, Koistinaho J, Malm T (2016) Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta 1862(3):403–410. https://doi.org/10.1016/j.bbadis.2015.09.020

    Article  CAS  PubMed  Google Scholar 

  42. Chen JJ, Zhao B, Zhao J, Li S (2017) Potential Roles of Exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s disease. Neural Plast 2017:7027380. https://doi.org/10.1155/2017/7027380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970. https://doi.org/10.1038/nm747nm747

    Article  CAS  PubMed  Google Scholar 

  44. Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis 37(2):267–274. https://doi.org/10.1016/j.nbd.2009.11.002

    Article  PubMed  Google Scholar 

  45. Madathil SK, Nelson PT, Saatman KE, Wilfred BR (2011) MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays 33(1):21–26. https://doi.org/10.1002/bies.201000069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu NK, Xu XM (2011) MicroRNA in central nervous system trauma and degenerative disorders. Physiol Genomics 43(10):571–580. https://doi.org/10.1152/physiolgenomics.00168.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339. https://doi.org/10.1038/nrneurol.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang C, Ji B, Cheng B, Chen J, Bai B (2014) Neuroprotection of microRNA in neurological disorders (Review). Biomed Rep 2(5):611–619. https://doi.org/10.3892/br.2014.297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chandran R, Mehta SL, Vemuganti R (2017) Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 111:12–22. https://doi.org/10.1016/j.neuint.2017.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun L, Zhao M, Wang Y, Liu A, Lv M, Li Y, Yang X, Wu Z (2017) Neuroprotective effects of miR-27a against traumatic brain injury via suppressing FoxO3a-mediated neuronal autophagy. Biochem Biophys Res Commun 482(4):1141–1147. https://doi.org/10.1016/j.bbrc.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  51. Zeng LL, He XS, Liu JR, Zheng CB, Wang YT, Yang GY (2016) Lentivirus-mediated overexpression of microRNA-210 improves long-term outcomes after focal cerebral ischemia in mice. CNS Neurosci Ther 22(12):961–969. https://doi.org/10.1111/cns.12589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun Y, Gui H, Li Q, Luo ZM, Zheng MJ, Duan JL, Liu X (2013) MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther 19(10):813–819. https://doi.org/10.1111/cns.12142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Muller B, Koch JC, Bahr M, Hermann DM, Michel U (2013) MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 126(2):251–265. https://doi.org/10.1007/s00401-013-1142-5

    Article  CAS  PubMed  Google Scholar 

  54. Tian YS, Zhong D, Liu QQ, Zhao XL, Sun HX, Jin J, Wang HN, Li GZ (2018) Upregulation of miR-216a exerts neuroprotective effects against ischemic injury through negatively regulating JAK2/STAT3-involved apoptosis and inflammatory pathways. J Neurosurg:1–12. https://doi.org/10.3171/2017.5.JNS163165

    Article  Google Scholar 

  55. Wang Y, Huang J, Ma Y, Tang G, Liu Y, Chen X, Zhang Z, Zeng L, Wang Y, Ouyang YB, Yang GY (2015) MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 35(12):1977–1984. https://doi.org/10.1038/jcbfm.2015.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang LG, Li JP, Pang XM, Chen CY, Xiang HY, Feng LB, Su SY, Li SH, Zhang L, Liu JL (2015) MicroRNA-29c correlates with Neuroprotection induced by FNS by targeting both Birc2 and Bak1 in rat brain after stroke. CNS Neurosci Ther 21(6):496–503. https://doi.org/10.1111/cns.12383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mao G, Ren P, Wang G, Yan F, Zhang Y (2017) MicroRNA-128-3p protects mouse against cerebral ischemia through reducing p38alpha mitogen-activated protein kinase activity. J Mol Neurosci 61(2):152–158. https://doi.org/10.1007/s12031-016-0871-z

    Article  CAS  PubMed  Google Scholar 

  58. Wang P, Liang X, Lu Y, Zhao X, Liang J (2016) MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochem Res 41(10):2627–2635. https://doi.org/10.1007/s11064-016-1975-0

    Article  CAS  PubMed  Google Scholar 

  59. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci USA 109(46):18962–18967. https://doi.org/10.1073/pnas.1121288109

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang N, Zhong J, Han S, Li Y, Yin Y, Li J (2016) MicroRNA-378 alleviates cerebral ischemic injury by negatively regulating apoptosis executioner caspase-3. Int J Mol Sci 17 (9):1427. https://doi.org/10.3390/ijms17091427

    Article  CAS  PubMed Central  Google Scholar 

  61. Xu LJ, Ouyang YB, Xiong X, Stary CM, Giffard RG (2015) Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp Neurol 264:1–7. https://doi.org/10.1016/j.expneurol.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  62. Peng Z, Li J, Li Y, Yang X, Feng S, Han S, Li J (2013) Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res 91(10):1349–1362. https://doi.org/10.1002/jnr.23255

    Article  CAS  PubMed  Google Scholar 

  63. Xing G, Luo Z, Zhong C, Pan X, Xu X (2016) Influence of miR-155 on cell apoptosis in rats with ischemic stroke: role of the Ras homolog enriched in brain (Rheb)/mTOR pathway. Med Sci Monit 22:5141–5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang P, Zhang N, Liang J, Li J, Han S, Li J (2015) Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 93(11):1756–1768. https://doi.org/10.1002/jnr.23637

    Article  CAS  PubMed  Google Scholar 

  65. Sun L, Zhao M, Zhang J, Liu A, Ji W, Li Y, Yang X, Wu Z (2017) MiR-144 promotes beta-amyloid accumulation-induced cognitive impairments by targeting ADAM10 following traumatic brain injury. Oncotarget 8(35):59181–59203. https://doi.org/10.18632/oncotarget.19469

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang H, Ye Y, Zhu Z, Mo L, Lin C, Wang Q, Wang H, Gong X, He X, Lu G, Lu F, Zhang S (2016) MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to Bim. Brain Pathol 26(2):167–176. https://doi.org/10.1111/bpa.12267

    Article  CAS  PubMed  Google Scholar 

  67. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106(31):13052–13057. https://doi.org/10.1073/pnas.0906277106

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T, Tanaka N, Nakanishi K, Eguchi A, Sunagawa T, Ochi M (2014) Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine 39(14):1099–1107. https://doi.org/10.1097/BRS.0000000000000356

    Article  PubMed  Google Scholar 

  69. Diaz Quiroz JF, Tsai E, Coyle M, Sehm T, Echeverri K (2014) Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis Model Mech 7(6):601–611. https://doi.org/10.1242/dmm.014837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, Kang SK (2012) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135(Pt 4):1237–1252. https://doi.org/10.1093/brain/aws047

    Article  PubMed  Google Scholar 

  71. Jee MK, Jung JS, Im YB, Jung SJ, Kang SK (2012) Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 23(5):508–520. https://doi.org/10.1089/hum.2011.121

    Article  CAS  PubMed  Google Scholar 

  72. Fawcett J (2009) Molecular control of brain plasticity and repair. Prog Brain Res 175:501–509. https://doi.org/10.1016/S0079-6123(09)17534-9

    Article  CAS  PubMed  Google Scholar 

  73. Carmichael ST, Kathirvelu B, Schweppe CA, Nie EH (2017) Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol 287(Pt 3):384–394. https://doi.org/10.1016/j.expneurol.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  74. Forostyak S, Jendelova P, Sykova E (2013) The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95(12):2257–2270. https://doi.org/10.1016/j.biochi.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  75. Tedeschi A, Omura T, Costigan M (2017) CNS repair and axon regeneration: using genetic variation to determine mechanisms. Exp Neurol 287(Pt 3):409–422. https://doi.org/10.1016/j.expneurol.2016.05.004

    Article  PubMed  Google Scholar 

  76. Elramah S, Landry M, Favereaux A (2014) MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Front Cell Neurosci 8:31. https://doi.org/10.3389/fncel.2014.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ghibaudi M, Boido M, Vercelli A (2017) Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 158:69–93. https://doi.org/10.1016/j.pneurobio.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  78. Hu Z, Li Z (2017) miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol 45:24–31. https://doi.org/10.1016/j.conb.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu D, Murashov AK (2013) MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci 6:35. https://doi.org/10.3389/fnmol.2013.00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu YW, Jiang JJ, Yan G, Wang RY, Tu GJ (2016) MicroRNA-210 promotes sensory axon regeneration of adult mice in vivo and in vitro. Neurosci Lett 622:61–66. https://doi.org/10.1016/j.neulet.2016.04.034

    Article  CAS  PubMed  Google Scholar 

  81. Wang WM, Lu G, Su XW, Lyu H, Poon WS (2017) MicroRNA-182 regulates neurite outgrowth involving the PTEN/AKT pathway. Front Cell Neurosci 11:96. https://doi.org/10.3389/fncel.2017.00096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, Aberdam D, Forsythe ID, Young KW, Ventura A, Concepcion CP, Han YC, Candi E, Knight RA, Mak TW, Melino G (2011) microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci USA 108(52):21099–21104. https://doi.org/10.1073/pnas.1112063108

    Article  PubMed  PubMed Central  Google Scholar 

  83. He QQ, Xiong LL, Liu F, He X, Feng GY, Shang FF, Xia QJ, Wang YC, Qiu DL, Luo CZ, Liu J, Wang TH (2016) MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 6:35205. https://doi.org/10.1038/srep35205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang Y, Zhao S, Ding Y, Nong L, Li H, Gao G, Zhou D, Xu N (2017) MicroRNA21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Mol Med Rep 16(3):2522–2528. https://doi.org/10.3892/mmr.2017.6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. White RE, Giffard RG (2012) MicroRNA-320 induces neurite outgrowth by targeting ARPP-19. Neuroreport 23(10):590–595. https://doi.org/10.1097/WNR.0b013e3283540394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schneider JA, Bennett DA (2010) Where vascular meets neurodegenerative disease. Stroke 41(10 Suppl):S144–S146. https://doi.org/10.1161/STROKEAHA.110.598326

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14(3):133–150. https://doi.org/10.1038/nrneurol.2017.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brouns R, De Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111(6):483–495. https://doi.org/10.1016/j.clineuro.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  89. Nelson E, Gertz SD, Rennels ML, Ducker TB, Blaumanis OR (1977) Spinal cord injury. The role of vascular damage in the pathogenesis of central hemorrhagic necrosis. Arch Neurol 34(6):332–333

    Article  CAS  PubMed  Google Scholar 

  90. Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117(5):481–496. https://doi.org/10.1007/s00401-009-0483-6

    Article  PubMed  Google Scholar 

  91. Ng MT, Stammers AT, Kwon BK (2011) Vascular disruption and the role of angiogenic proteins after spinal cord injury. Transl Stroke Res 2(4):474–491. https://doi.org/10.1007/s12975-011-0109-x

    Article  PubMed  PubMed Central  Google Scholar 

  92. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071. https://doi.org/10.1182/blood-2006-01-012369

    Article  CAS  PubMed  Google Scholar 

  93. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101(1):59–68. https://doi.org/10.1161/CIRCRESAHA.107.153916

    Article  CAS  PubMed  Google Scholar 

  94. Holderfield MT, Hughes CCW (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102(6):637–652. https://doi.org/10.1161/Circresaha.107.167171

    Article  CAS  PubMed  Google Scholar 

  95. Bobik A (2006) Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 26(8):1712–1720. https://doi.org/10.1161/01.ATV.0000225287.20034.2c

    Article  CAS  PubMed  Google Scholar 

  96. Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12–15. https://doi.org/10.1016/j.tips.2007.10.014

    Article  CAS  PubMed  Google Scholar 

  97. Yin KJ, Hamblin M, Chen YE (2015) Angiogenesis-regulating microRNAs and Ischemic Stroke. Curr Vasc Pharmacol 13(3):352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Landskroner-Eiger S, Moneke I, Sessa WC (2013) miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med 3(2):a006643. https://doi.org/10.1101/cshperspect.a006643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lopez-Ramirez MA, Reijerkerk A, de Vries HE, Romero IA (2016) Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB J 30(8):2662–2672. https://doi.org/10.1096/fj.201600435RR

    Article  CAS  PubMed  Google Scholar 

  100. Yin KJ, Hamblin M, Chen YE (2014) Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochem Int 77:9–16. https://doi.org/10.1016/j.neuint.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  101. Cichon C, Sabharwal H, Ruter C, Schmidt MA (2014) MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions. Tissue Barriers 2(4):e944446. https://doi.org/10.4161/21688362.2014.944446

    Article  PubMed  PubMed Central  Google Scholar 

  102. Li XQ, Fang B, Tan WF, Wang ZL, Sun XJ, Zhang ZL, Ma H (2016) miR-320a affects spinal cord edema through negatively regulating aquaporin-1 of blood-spinal cord barrier during bimodal stage after ischemia reperfusion injury in rats. BMC Neurosci 17:10. https://doi.org/10.1186/s12868-016-0243-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Costa A, Afonso J, Osorio C, Gomes AL, Caiado F, Valente J, Aguiar SI, Pinto F, Ramirez M, Dias S (2013) miR-363-5p regulates endothelial cell properties and their communication with hematopoietic precursor cells. J Hematol Oncol 6(1):87. https://doi.org/10.1186/1756-8722-6-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. He QW, Li Q, Jin HJ, Zhi F, Suraj B, Zhu YY, Xia YP, Mao L, Chen XL, Hu B (2016) MiR-150 regulates poststroke cerebral angiogenesis via vascular endothelial growth factor in rats. CNS Neurosci Ther 22(6):507–517. https://doi.org/10.1111/cns.12525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J, Kay O, de Vries HE, Hirst MC, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28(6):2551–2565. https://doi.org/10.1096/fj.13-248880

    Article  CAS  PubMed  Google Scholar 

  106. Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, Bragin D, Yang Y, Erhardt EB, Roitbak T (2015) In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 35(36):12446–12464. https://doi.org/10.1523/JNEUROSCI.1641-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cardoso AL, Guedes JR, de Lima MC (2016) Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions. Curr Opin Pharmacol 26:1–9. https://doi.org/10.1016/j.coph.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  108. Nilupul Perera M, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA (2006) Inflammation following stroke. J Clin Neurosci 13(1):1–8. https://doi.org/10.1016/j.jocn.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  109. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240. https://doi.org/10.1038/sj.bjp.0706400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698. https://doi.org/10.1038/jcbfm.2012.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41(7):369–378. https://doi.org/10.1038/sj.sc.3101483

    Article  CAS  PubMed  Google Scholar 

  112. Su W, Aloi MS, Garden GA (2016) MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun 52:1–8. https://doi.org/10.1016/j.bbi.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  113. Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG (2017) MicroRNAs: roles in regulating neuroinflammation. Neuroscientist. https://doi.org/10.1177/1073858417721150

    Article  PubMed  PubMed Central  Google Scholar 

  114. Thounaojam MC, Kaushik DK, Basu A (2013) MicroRNAs in the brain: it’s regulatory role in neuroinflammation. Mol Neurobiol 47(3):1034–1044. https://doi.org/10.1007/s12035-013-8400-3

    Article  CAS  PubMed  Google Scholar 

  115. Jadhav SP, Kamath SP, Choolani M, Lu J, Dheen ST (2014) microRNA-200b modulates microglia-mediated neuroinflammation via the cJun/MAPK pathway. J Neurochem 130(3):388–401. https://doi.org/10.1111/jnc.12731

    Article  CAS  PubMed  Google Scholar 

  116. Wang X, Chen S, Ni J, Cheng J, Jia J, Zhen X (2018) miRNA-3473b contributes to neuroinflammation following cerebral ischemia. Cell Death Dis 9(1):11. https://doi.org/10.1038/s41419-017-0014-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lv J, Zeng Y, Qian Y, Dong J, Zhang Z, Zhang J (2018) MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res 1685:91–104. https://doi.org/10.1016/j.brainres.2018.01.032

    Article  CAS  PubMed  Google Scholar 

  118. Lv YN, Ou-Yang AJ, Fu LS (2017) MicroRNA-27a negatively modulates the inflammatory response in lipopolysaccharide-stimulated microglia by targeting TLR4 and IRAK4. Cell Mol Neurobiol 37(2):195–210. https://doi.org/10.1007/s10571-016-0361-4

    Article  CAS  PubMed  Google Scholar 

  119. Yuan B, Shen H, Lin L, Su T, Zhong L, Yang Z (2015) MicroRNA367 negatively regulates the inflammatory response of microglia by targeting IRAK4 in intracerebral hemorrhage. J Neuroinflammation 12:206. https://doi.org/10.1186/s12974-015-0424-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, Yosef N, Vaidya VS, Weiner HL (2015) MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 125(3):1069–1080. https://doi.org/10.1172/JCI74347

    Article  PubMed  PubMed Central  Google Scholar 

  121. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96(1):25–34

    Article  CAS  PubMed  Google Scholar 

  122. Dietrich J, Kempermann G (2006) Role of endogenous neural stem cells in neurological disease and brain repair. Adv Exp Med Biol 557:191–220. https://doi.org/10.1007/0-387-30128-3_12

    Article  CAS  PubMed  Google Scholar 

  123. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7):e182. https://doi.org/10.1371/journal.pbio.0060182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, Bullock MR (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol 183(2):406–417.

    Article  CAS  PubMed  Google Scholar 

  125. Richardson RM, Singh A, Sun D, Fillmore HL, Dietrich DW 3rd, Bullock MR (2010) Stem cell biology in traumatic brain injury: effects of injury and strategies for repair. J Neurosurg 112(5):1125–1138. https://doi.org/10.3171/2009.4.JNS081087

    Article  PubMed  Google Scholar 

  126. Sun D, Colello RJ, Daugherty WP, Kwon TH, McGinn MJ, Harvey HB, Bullock MR (2005) Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma 22(1):95–105. https://doi.org/10.1089/neu.2005.22.95

    Article  PubMed  Google Scholar 

  127. Darian-Smith C (2009) Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury. Neuroscientist 15(2):149–165. https://doi.org/10.1177/1073858408331372

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wallace MC, Tator CH, Lewis AJ (1987) Chronic regenerative changes in the spinal cord after cord compression injury in rats. Surg Neurol 27(3):209–219

    Article  CAS  PubMed  Google Scholar 

  129. Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, Faden AI, Hsu CY, Noble LJ, Salzman S, Young W (1997) Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 148(2):453–463. https://doi.org/10.1006/exnr.1997.6695

    Article  CAS  PubMed  Google Scholar 

  130. Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya SS, Erceg S (2015) Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells 33(4):1036–1041. https://doi.org/10.1002/stem.1959

    Article  PubMed  Google Scholar 

  131. Liu C, Zhao X (2009) MicroRNAs in adult and embryonic neurogenesis. Neuromol Med 11(3):141–152. https://doi.org/10.1007/s12017-009-8077-y

    Article  CAS  Google Scholar 

  132. Shi MA, Shi GP (2010) Intracellular delivery strategies for microRNAs and potential therapies for human cardiovascular diseases. Sci Signal 3(146):pe40. https://doi.org/10.1126/scisignal.3146pe40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. Adv Exp Med Biol 786:329–351. https://doi.org/10.1007/978-94-007-6621-1_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bielefeld P, Mooney C, Henshall DC, Fitzsimons CP (2017) miRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Epilepsy. Brain Plast 3(1):43–59. https://doi.org/10.3233/BPL-160036

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fan Z, Lu M, Qiao C, Zhou Y, Ding JH, Hu G (2016) MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/Caspase-1 axis in adult neural stem cells. Mol Neurobiol 53(10):7057–7069. https://doi.org/10.1007/s12035-015-9620-5

    Article  CAS  PubMed  Google Scholar 

  136. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. Plos ONE 6(8):e23461. https://doi.org/10.1371/journal.pone.0023461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, Kassis H, Zhang RL, Chen C, Xu J, Zhang ZG (2013) MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem 288(18):12478–12488. https://doi.org/10.1074/jbc.M112.449025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Suzuki SO, Goldman JE (2003) Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J Neurosci 23(10):4240–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8(5):491–500. https://doi.org/10.1016/S1474-4422(09)70061-4

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhang R, Chopp M, Zhang ZG (2013) Oligodendrogenesis after cerebral ischemia. Front Cell Neurosci 7:201. https://doi.org/10.3389/fncel.2013.00201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. El Waly B, Macchi M, Cayre M, Durbec P (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145. https://doi.org/10.3389/fnins.2014.00145

    Article  PubMed  PubMed Central  Google Scholar 

  142. Flygt J, Djupsjo A, Lenne F, Marklund N (2013) Myelin loss and oligodendrocyte pathology in white matter tracts following traumatic brain injury in the rat. Eur J Neurosci 38(1):2153–2165. https://doi.org/10.1111/ejn.12179

    Article  CAS  PubMed  Google Scholar 

  143. Behrendt G, Baer K, Buffo A, Curtis MA, Faull RL, Rees MI, Gotz M, Dimou L (2013) Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61(2):273–286. https://doi.org/10.1002/glia.22432

    Article  PubMed  Google Scholar 

  144. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918. https://doi.org/10.1523/JNEUROSCI.1299-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Serwanski DR, Rasmussen AL, Brunquell CB, Perkins SS, Nishiyama A (2018) Sequential contribution of parenchymal and neural stem cell-derived oligodendrocyte precursor cells toward remyelination. Neuroglia 1(1):91–105. https://doi.org/10.3390/neuroglia1010008

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhang RL, Chopp M, Roberts C, Jia L, Wei M, Lu M, Wang X, Pourabdollah S, Zhang ZG (2011) Ascl1 lineage cells contribute to ischemia-induced neurogenesis and oligodendrogenesis. J Cereb Blood Flow Metab 31(2):614–625. https://doi.org/10.1038/jcbfm.2010.134

    Article  CAS  PubMed  Google Scholar 

  147. Flygt J, Gumucio A, Ingelsson M, Skoglund K, Holm J, Alafuzoff I, Marklund N (2016) Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 75(6):503–515. https://doi.org/10.1093/jnen/nlw025

    Article  CAS  PubMed  Google Scholar 

  148. Flygt J, Clausen F, Marklund N (2017) Diffuse traumatic brain injury in the mouse induces a transient proliferation of oligodendrocyte progenitor cells in injured white matter tracts. Restor Neurol Neurosci 35(2):251–263. https://doi.org/10.3233/RNN-160675

    Article  CAS  PubMed  Google Scholar 

  149. Tripathi R, McTigue DM (2007) Prominent oligodendrocyte genesis along the border of spinal contusion lesions. Glia 55(7):698–711. https://doi.org/10.1002/glia.20491

    Article  PubMed  Google Scholar 

  150. Li N, Leung GK (2015) Oligodendrocyte precursor cells in spinal cord injury: a review and update. Biomed Res Int. https://doi.org/10.1155/2015/235195

    Article  PubMed  PubMed Central  Google Scholar 

  151. Barca-Mayo O, Lu QR (2012) Fine-tuning oligodendrocyte development by microRNAs. Front Neurosci 6:13. https://doi.org/10.3389/fnins.2012.00013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Galloway DA, Moore CS (2016) miRNAs as emerging regulators of oligodendrocyte development and differentiation. Front Cell Dev Biol 4:59. https://doi.org/10.3389/fcell.2016.00059

    Article  PubMed  PubMed Central  Google Scholar 

  153. Liu XS, Chopp M, Pan WL, Wang XL, Fan BY, Zhang Y, Kassis H, Zhang RL, Zhang XM, Zhang ZG (2017) MicroRNA-146a promotes oligodendrogenesis in stroke. Mol Neurobiol 54(1):227–237. https://doi.org/10.1007/s12035-015-9655-7

    Article  CAS  PubMed  Google Scholar 

  154. Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, Zhao C, Zhang L, Jiang M, He X, Ma Z, Lu F, Xin M, Zhou W, Yoon SO, Bongarzone ER, Lu QR (2017) miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev Cell 40(6):566–582. https://doi.org/10.1016/j.devcel.2017.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lin ST, Huang Y, Zhang L, Heng MY, Ptacek LJ, Fu YH (2013) MicroRNA-23a promotes myelination in the central nervous system. Proc Natl Acad Sci USA 110(43):17468–17473. https://doi.org/10.1073/pnas.1317182110

    Article  PubMed  PubMed Central  Google Scholar 

  156. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792(6):497–505. https://doi.org/10.1016/j.bbadis.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  157. O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, Kahn ME, Rao DS, Baltimore D (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33(4):607–619. https://doi.org/10.1016/j.immuni.2010.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532(1):1–12. https://doi.org/10.1016/j.gene.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  159. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414. https://doi.org/10.1016/j.cell.2007.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sun HX, Zeng DY, Li RT, Pang RP, Yang H, Hu YL, Zhang Q, Jiang Y, Huang LY, Tang YB, Yan GJ, Zhou JG (2012) Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 60(6):1407–1414. https://doi.org/10.1161/HYPERTENSIONAHA.112.197301

    Article  CAS  PubMed  Google Scholar 

  161. Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, Greco DJ, Wu PM, Doykan CE, Kiner O, Lawson RJ, Frosch MP, Pochet N, Fatimy RE, Krichevsky AM, Gygi SP, Lassmann H, Berry J, Cudkowicz ME, Weiner HL (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77(1):75–99. https://doi.org/10.1002/ana.24304

    Article  CAS  PubMed  Google Scholar 

  162. Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS, Lee SC (2011) Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 59(12):1911–1922. https://doi.org/10.1002/glia.21233

    Article  PubMed  PubMed Central  Google Scholar 

  163. Weber M, Kim S, Patterson N, Rooney K, Searles CD (2014) MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am J Physiol Heart Circ Physiol 306(8):H1192–H1203. https://doi.org/10.1152/ajpheart.00521.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL (2011) Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 187(5):2213–2221. https://doi.org/10.4049/jimmunol.1003952

    Article  CAS  PubMed  Google Scholar 

  165. Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, McSharry C, Hueber AJ, Baxter D, Hunter J, Gay S, Liew FY, McInnes IB (2011) MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 108(27):11193–11198. https://doi.org/10.1073/pnas.1019536108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. van Solingen C, Araldi E, Chamorro-Jorganes A, Fernandez-Hernando C, Suarez Y (2014) Improved repair of dermal wounds in mice lacking microRNA-155. J Cell Mol Med. https://doi.org/10.1111/jcmm.12255

    Article  PubMed  PubMed Central  Google Scholar 

  167. Perera MN, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA (2006) Inflammation following stroke. J Clin Neurosci 13(1):1–8. doi:https://doi.org/10.1016/J.Jocn.2005.07.005

    Article  CAS  Google Scholar 

  168. Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG (2011) Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42(7):2026–2032. https://doi.org/10.1161/STROKEAHA.110.593772

    Article  PubMed  PubMed Central  Google Scholar 

  169. Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, Chau BN, Wu GF, Miller TM (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Human molecular genetics 22(20):4127–4135. https://doi.org/10.1093/hmg/ddt261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ashhab MU, Omran A, Kong H, Gan N, He F, Peng J, Yin F (2013) Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci 51(3):950–958. https://doi.org/10.1007/s12031-013-0013-9

    Article  CAS  PubMed  Google Scholar 

  171. Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L (2014) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266(1–2):56–63. https://doi.org/10.1016/j.jneuroim.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  172. Zhou J, Wang W, Gao Z, Peng X, Chen X, Chen W, Xu W, Xu H, Lin MC, Jiang S (2013) MicroRNA-155 promotes glioma cell proliferation via the regulation of MXI1. Plos ONE 8(12):e83055. https://doi.org/10.1371/journal.pone.0083055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yan Z, Che S, Wang J, Jiao Y, Wang C, Meng Q (2015) miR-155 contributes to the progression of glioma by enhancing Wnt/beta-catenin pathway. Tumour Biol 36(7):5323–5331. https://doi.org/10.1007/s13277-015-3193-9

    Article  CAS  PubMed  Google Scholar 

  174. Roitbak T, Bragina O, Padilla JL, Pickett GG (2011) The role of microRNAs in neural stem cell-supported endothelial morphogenesis. Vasc Cell 3:25. https://doi.org/10.1186/2045-824X-3-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T (2016) In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflammation 13(1):287. https://doi.org/10.1186/s12974-016-0753-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mashima R (2015) Physiological roles of miR-155. Immunology 145(3):323–333. https://doi.org/10.1111/imm.12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pena-Philippides JC, Gardiner AS, Caballero-Garrido E, Pan R, Zhu Y, Roitbak T (2018) Inhibition of miR-155 supports endothelial tight junction integrity following oxygen-glucose deprivation. J Am Heart Assoc 7(13):e009244. https://doi.org/10.1161/JAHA.118.009244

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ (2018) MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X18773871

    Article  PubMed  PubMed Central  Google Scholar 

  179. Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, Vance JM, Outeiro TF, Wang L, Borovecki F, Ferreira JJ, Oliveira SA (2011) Convergence of miRNA expression profiling, alpha-synuclein interacton and GWAS in Parkinson’s disease. Plos ONE 6(10):e25443. https://doi.org/10.1371/journal.pone.0025443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kim W, Lee Y, McKenna ND, Yi M, Simunovic F, Wang Y, Kong B, Rooney RJ, Seo H, Stephens RM, Sonntag KC (2014) miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35(7):1712–1721. https://doi.org/10.1016/j.neurobiolaging.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dewdney B, Trollope A, Moxon J, Thomas Manapurathe D, Biros E, Golledge J (2018) Circulating microRNAs as biomarkers for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis 27(3):522–530. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.058

    Article  PubMed  Google Scholar 

  182. Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. Plos ONE 5(2):e8898. https://doi.org/10.1371/journal.pone.0008898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hachisuka S, Kamei N, Ujigo S, Miyaki S, Yasunaga Y, Ochi M (2014) Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord 52(8):596–600. https://doi.org/10.1038/sc.2014.86

    Article  CAS  PubMed  Google Scholar 

  184. Wang Y, Ye F, Huang C, Xue F, Li Y, Gao S, Qiu Z, Li S, Chen Q, Zhou H, Song Y, Huang W, Tan W, Wang Z (2018) Bioinformatic analysis of potential biomarkers for spinal cord-injured patients with intractable neuropathic pain. Clin J Pain 34(9):825–830. https://doi.org/10.1097/AJP.0000000000000608

    Article  PubMed  PubMed Central  Google Scholar 

  185. Bhomia M, Balakathiresan NS, Wang KK, Papa L, Maheshwari RK (2016) A panel of serum MiRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans. Sci Rep 6:28148. https://doi.org/10.1038/srep28148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, Lemole GM Jr, Preul MC, Theodore N (2016) The role of microRNA markers in the diagnosis, treatment, and outcome prediction of spinal cord injury. Front Surg 3:56. https://doi.org/10.3389/fsurg.2016.00056

    Article  PubMed  PubMed Central  Google Scholar 

  187. Di Pietro V, Yakoub KM, Scarpa U, Di Pietro C, Belli A (2018) MicroRNA signature of traumatic brain injury: from the biomarker discovery to the point-of-care. Front Neurol 9:429. https://doi.org/10.3389/fneur.2018.00429

    Article  PubMed  PubMed Central  Google Scholar 

  188. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143. https://doi.org/10.1016/j.omtn.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S, Janssen HL, Kootstra NA, Reesink HW (2016) Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther 43(1):102–113. https://doi.org/10.1111/apt.13432

    Article  CAS  PubMed  Google Scholar 

  190. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35(2):180–188. https://doi.org/10.1007/s10637-016-0407-y

    Article  CAS  PubMed  Google Scholar 

  191. Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M (2017) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke 19(2):166–187. https://doi.org/10.5853/jos.2016.01368

    Article  PubMed  PubMed Central  Google Scholar 

  192. Chopp M, Zhang ZG (2015) Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases. Expert Opin Emerg Drugs 20(4):523–526. https://doi.org/10.1517/14728214.2015.1061993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Xiong Y, Mahmood A, Chopp M (2017) Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res 12(1):19–22. https://doi.org/10.4103/1673-5374.198966

    Article  PubMed  PubMed Central  Google Scholar 

  194. Zhang ZG, Buller B, Chopp M (2019) Exosomes—beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. https://doi.org/10.1038/s41582-018-0126-4

    Article  PubMed  Google Scholar 

  195. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715. https://doi.org/10.1038/jcbfm.2013.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xin H, Li Y, Chopp M (2014) Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 8:377. https://doi.org/10.3389/fncel.2014.00377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang Y, Chopp M, Liu XS, Katakowski M, Wang X, Tian X, Wu D, Zhang ZG (2017) Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol 54(4):2659–2673. https://doi.org/10.1007/s12035-016-9851-0

    Article  CAS  PubMed  Google Scholar 

  198. Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C (2015) Acetylbritannilactone modulates MicroRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med 21:197–209. https://doi.org/10.2119/molmed.2014.00199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bisicchia E, Sasso V, Catanzaro G, Leuti A, Besharat ZM, Chiacchiarini M, Molinari M, Ferretti E, Viscomi MT, Chiurchiu V (2018) Resolvin D1 halts remote neuroinflammation and improves functional recovery after focal brain damage Via ALX/FPR2 receptor-regulated microRNAs. Mol Neurobiol 55(8):6894–6905. https://doi.org/10.1007/s12035-018-0889-z

    Article  CAS  PubMed  Google Scholar 

  200. Paeschke N, von Haefen C, Endesfelder S, Sifringer M, Spies CD (2017) Dexmedetomidine prevents lipopolysaccharide-induced microRNA expression in the adult rat brain. Int J Mol Sci 18(9):1830. https://doi.org/10.3390/ijms18091830

    Article  CAS  PubMed Central  Google Scholar 

  201. Li M, Shao H, Zhang X, Qin B (2016) Hesperidin Alleviates lipopolysaccharide-induced neuroinflammation in mice by promoting the miRNA-132 pathway. Inflammation 39(5):1681–1689. https://doi.org/10.1007/s10753-016-0402-7

    Article  CAS  PubMed  Google Scholar 

  202. Song J, Li N, Xia Y, Gao Z, Zou SF, Yan YH, Li SH, Wang Y, Meng YK, Yang JX, Kang TG (2016) arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J Mol Neurosci 60(1):115–129. https://doi.org/10.1007/s12031-016-0784-x

    Article  CAS  PubMed  Google Scholar 

  203. Sinoy S, Fayaz SM, Charles KD, Suvanish VK, Kapfhammer JP, Rajanikant GK (2017) Amikacin inhibits miR-497 maturation and exerts post-ischemic neuroprotection. Mol Neurobiol 54(5):3683–3694. https://doi.org/10.1007/s12035-016-9940-0

    Article  CAS  PubMed  Google Scholar 

  204. Wang Y, Dong X, Li Z, Wang W, Tian J, Chen J (2014) Downregulated RASD1 and upregulated miR-375 are involved in protective effects of calycosin on cerebral ischemia/reperfusion rats. J Neurol Sci 339(1–2):144–148. https://doi.org/10.1016/j.jns.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  205. Doeppner TR, Kaltwasser B, Sanchez-Mendoza EH, Caglayan AB, Bahr M, Hermann DM (2017) Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3beta inhibition-independent pathways. J Cereb Blood Flow Metab 37(3):914–926. https://doi.org/10.1177/0271678X16647738

    Article  CAS  PubMed  Google Scholar 

  206. Ma F, Liu F, Ding L, You M, Yue H, Zhou Y, Hou Y (2017) Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol 55(1):1263–1273. https://doi.org/10.1080/13880209.2017.1297838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27(6):1027–1041. https://doi.org/10.1007/s11095-010-0105-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Phuah NH, Nagoor NH (2014) Regulation of microRNAs by natural agents: new strategies in cancer therapies. Biomed Res Int 2014:804510. https://doi.org/10.1155/2014/804510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Neurological Disorders and Stroke-NIH R01NS082225 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Roitbak.

Ethics declarations

Conflict of interest

The author declares no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In honor of Prof. Eva Sykova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roitbak, T. MicroRNAs and Regeneration in Animal Models of CNS Disorders. Neurochem Res 45, 188–203 (2020). https://doi.org/10.1007/s11064-019-02777-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02777-6

Keywords

Navigation