Skip to main content
Log in

Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Post-synthetic functionalization or modification has been regarded as a promising strategy to treat surfaces of adsorbents for their applications in targeted adsorption and separation processes. In this work, a novel microporous adsorbent for carbon capturing was developed via functionalization of zeolitic imidazolate frame-work-91 (ZIF-91) to generate a hard/hard (metal-oxygen) structure named as lithium-modified ZIF-91 (ZIF-91-OLi compound). To this purpose, the ZIF-91 compound as an intermediate product was achieved by reduction of ZIF-90 in the presence of NaBH4 as a good reducing agent. Afterwards, acidic hydrogen atoms in the hydroxyl groups of ZIF-91 were exchanged with lithium cations via reaction of n-BuLi compound as an organo lithium agent through an appropriate procedure. In particular, the as-synthesized ZIF-91-OLi operated as an excellent electron-rich center for CO2 adsorption through trapping the positive carbon centers in the CO2 molecule. DFT calculations revealed that the presence of lithium over the surface of ZIF-91-OLi adsorbent plays an effective role in double enhancement of CO2 storage via creating a strong negative charge center at the oxygen atoms of the imidazolate linker as a result of the lithium/hydrogen exchange system. Finally, the selectivity of CO2/N2 was investigated at different temperatures, revealing the ZIF-91-OLi as a selective adsorbent for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosskopf D. Sodium-hydrogen exchange and platelet function. Journal of Thrombosis and Thrombolysis, 1999, 8(1): 15–23

    CAS  PubMed  Google Scholar 

  2. Altstetter C J. Metal-oxygen systems. Bulletin of Alloy Phase Diagrams, 1984, 5(6): 543–553

    Google Scholar 

  3. Nandan D, Gupta A R. Lithium/hydrogen, sodium/hydrogen, and potassium/hydrogen ion exchange equilibria on cross-linked dowex 58w resins in anhydrous methanol. Journal of Physical Chemistry, 1975, 79(2): 180–185

    CAS  Google Scholar 

  4. Gende O A, Cingolani H E. Comparison between sodium-hydrogen ion and lithium-hydrogen ion exchange in human platelets. Biochimica et Biophysica Acta, 1993, 1152(2): 219–224

    CAS  PubMed  Google Scholar 

  5. Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. Journal of Molecular and Cellular Cardiology, 1985, 17(11): 1029–1042

    CAS  PubMed  Google Scholar 

  6. Wang L, Zhang Y, Liu Z, Guo L, Peng Z. Understanding oxygen electrochemistry in aprotic Li-O2 batteries. Green Energy & Environment, 2017, 2(3): 186–203

    Google Scholar 

  7. Sun D, Shen Y, Zhang W, Yu L, Yi Z, Yin W, Wang D, Huang Y, Wang J, Wang D, Goodenough J B. A solution-phase bifunctional catalyst for lithium-oxygen batteries. Journal of the American Chemical Society, 2014, 136(25): 8941–8946

    CAS  PubMed  Google Scholar 

  8. Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F, Bruce P G. The lithium-oxygen battery with ether-based electrolytes. Angewandte Chemie International Edition, 2011, 50(37): 8609–8613

    CAS  PubMed  Google Scholar 

  9. Urgaonkar S, Verkade J G. Palladium/proazaphosphatrane-cata-lyzed amination of arylhalides possessing a phenol, alcohol, acetanilide, amide or an enolizable ketone functional group: Efficacy of lithiumbis(trimethylsilyl)amide as the base. Advanced Synthesis & Catalysis, 2004, 346(6): 611–616

    CAS  Google Scholar 

  10. Li Y, Paddon-Row M N, Houk K N. Transition structures for the aldol reactions of anionic, lithium, andboron enolates. Journal of Organic Chemistry, 1990, 55(2): 481–493

    CAS  Google Scholar 

  11. Schlessinger R H, Iwanowicz E J, Springer J P. An enantio- and erythro-selective lithium enolate derived from a vinylogous urethane: Its application as a C4 synthon to the virginiamycin M2 problem. Journal of Organic Chemistry, 1986, 51(15): 3070–3073

    CAS  Google Scholar 

  12. Pratt L M, Streitwieser A. Computational study of lithium enolate mixed aggregates. Journal of Organic Chemistry, 2003, 68(7): 2830–2838

    CAS  PubMed  Google Scholar 

  13. Itoh Y, Mikami K. Radical trifluoromethylation of titanium ate enolate. Organic Letters, 2005, 7(4): 649–651

    CAS  PubMed  Google Scholar 

  14. Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Niknam Shahrak M, Niknam Shahrak M O, Shahsavand A, Khazeni N, Wu X, Deng S. Gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption. Chinese Journal of Chemical Engineering, 2017, 25(5): 595–601

    Google Scholar 

  16. Niknam Shahrak M, Ghahramaninezhad M, Eydifarash M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr (VI) ions from aqueous solution. Environmental Science and Pollution Research International, 2017, 24(10): 9624–9634

    CAS  PubMed  Google Scholar 

  17. Ghahramaninezhad M, Soleimani B, Niknam Shahrak M. A simple and novel protocol for Li-trapping with a POM/MOF nano-composite as a new adsorbent for CO2 uptake. New Journal of Chemistry, 2018, 42(6): 4639–4645

    CAS  Google Scholar 

  18. Chen B, Yang Z, Zhu Y, Xia Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(40): 16811–16831

    CAS  Google Scholar 

  19. Wu X, Niknam Shahrak M, Yuan B, Deng S. Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation. Microporous and Mesoporous Materials, 2014, 190: 189–196

    CAS  Google Scholar 

  20. Ayati A, Shahrak M N, Tanhaei B, Sillanpää M. Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere, 2016, 160: 30–44

    CAS  PubMed  Google Scholar 

  21. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Water adsorption in MOFs: Fundamentals and applications. Chemical Society Reviews, 2014, 43(16): 5594–5617

    CAS  PubMed  Google Scholar 

  22. Mohajer F, Niknam Shahrak M. Simulation study on CO2 diffusion and adsorption in zeolitic imidazolate framework-8 and-90: influence of different functional groups. Heat and Mass Transfer Journal, 2019, 55(7): 2017–2023

    CAS  Google Scholar 

  23. Morris W, Doonan C J, Furukawa H, Banerjee R, Yaghi O M. Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society, 2008, 130(38): 12626–12627

    CAS  PubMed  Google Scholar 

  24. Liu C, Liu Q, Huang A. Superhydrophobic zeolitic imidazolate framework ZIF-90 with high steam stability for efficient recover of bioalcohols. Chemical Communications, 2016, 52(16): 3400–3402

    CAS  PubMed  Google Scholar 

  25. Huang A, Liu Q, Wang N, Caro J. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation. Microporous and Mesoporous Materials, 2014, 192: 18–22

    CAS  Google Scholar 

  26. Tharun J, Bhin K M, Roshan R, Kim D W, Kathalikkattil A C, Babu R, Ahn H Y, Won Y S, Park D W. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chemistry, 2016, 18(8): 2479–2487

    CAS  Google Scholar 

  27. Huang A, Caro J. Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angewandte Chemie International Edition, 2011, 50(21): 4979–4982

    CAS  PubMed  Google Scholar 

  28. Yu L Q, Yang X P. Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chemical Communications, 2013, 49(21): 2142–2148

    CAS  PubMed  Google Scholar 

  29. Bhattacharjee S, Lee Y R, Ahn W S. Post-synthesis functionaliza-tion of a zeolitic imidazolate structure ZIF-90: A study on removal of Hg(II) from water and epoxidation of alkenes. CrystEngComm, 2015, 17(12): 2575–2582

    CAS  Google Scholar 

  30. Jones C G, Stavila V, Conroy M A, Feng P, Slaughter B V, Ashley C E, Allendorf M D. Versatile synthesis and fluorescent labeling of ZIF-90 nanoparticles for biomedical applications. ACS Applied Materials & Interfaces, 2016, 8(12): 7623–7630

    CAS  Google Scholar 

  31. Wang E, Shen J, Wang Y, Tang S, Emami S, Reaney M J T. Production of biodiesel with lithium glyceroxide. Fuel, 2015, 160: 621–628

    CAS  Google Scholar 

  32. Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks. Chemical Reviews, 2011, 112(2): 724–781

    PubMed  Google Scholar 

  33. Do D D. Adsorption Analysis: Equilibria and Kinetics. 2nd ed. London: Imperial College Press, 1999, 13–18

    Google Scholar 

  34. Bai L, Tu B, Qi Y, Gao Q, Liu D, Liu Z, Zhao L, Li Q, Zhao Y. Enhanced performance in gas adsorption and Li ion battery by docking Li+ in crown ether-based metal organic framework. Chemical Communications, 2016, 52(14): 3003–3006

    CAS  PubMed  Google Scholar 

  35. Lim D W, Chyun S A, Suh M P. Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts as specific cation binding sites. Angewandte Chemie International Edition, 2014, 53(30): 7819–7824

    CAS  PubMed  Google Scholar 

  36. Zhou W, Wu H, Hartman M R, Yildirim T. Hydrogen and methane adsorption in metal-organic frameworks: A high-pressure volumetric study. Journal of Physical Chemistry C, 2007, 111(44): 16131–16137

    CAS  Google Scholar 

  37. Amrouche H, Aguado S, Pérez- Pellitero J, Chizallet C, Siperstein F, Farrusseng D, Bats D, Nieto-Draghi C. Experimental and computational study of functionality impact on sodalite-zeolitic imidazolate frameworks for CO2 separation. Journal of Physical Chemistry C, 2011, 115(33): 16425–16432

    CAS  Google Scholar 

  38. Jensen J H, Kromann J C. The molecule calculator: A web application for fast quantum mechanics-based estimation of molecular properties. Journal of Chemical Education, 2013, 90(8): 1093–1095

    CAS  Google Scholar 

  39. Planas N, Dzubak A L, Poloni R, Lin L C, McManus A, McDonald T M, Neaton J B, Long J R, Smit B, Gagliardi L. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. Journal of the American Chemical Society, 2013, 135(20): 7402–7405

    CAS  PubMed  Google Scholar 

  40. Lan J, Cao D, Wang W, Smit B. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano, 2010, 4(7): 4225–4237

    CAS  PubMed  Google Scholar 

  41. Liu D, Zheng C, Yang Q, Zhong C. Understanding the adsorption and diffusion of carbon dioxide in zeoliticimidazolate frameworks: A molecular simulation study. Journal of Physical Chemistry C, 2009, 113(12): 5004–5009

    CAS  Google Scholar 

  42. Pérez- Pellitero J, Amrouche H, Siperstein F R, Pirngruber G, Nieto-Draghi C, Chaplais G, Simon-Masseron A, Bazer-Bachi D, Peralta D, Bats N. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: Experiments and simulations. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(5): 1560–1571

    Google Scholar 

  43. Wang B, Côté A P, Furukawa H, O'Keeffe M, Yaghi O M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453(7192): 207–211

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supplementary material is available in the online version of this article at and is accessible for authorized users.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Niknam Shahrak.

Supporting Information for

11705_2019_1873_MOESM1_ESM.pdf

Improved CO2 Capture Performances of ZIF-90 through Sequential Reduction and Lithiation Reactions to Form a Hard/Hard Structure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahramaninezhad, M., Mohajer, F. & Niknam Shahrak, M. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure. Front. Chem. Sci. Eng. 14, 425–435 (2020). https://doi.org/10.1007/s11705-019-1873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1873-5

Keywords

Navigation