Skip to main content
Log in

Estimating Residual Kidney Function: Present and Future Challenge

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Residual kidney function is a major prognosis factor in patients with end-stage renal disease under hemodialysis or peritoneal dialysis. Advances in later years promoted residual kidney function protection as an adequacy target and the advocacy of incremental dialysis, utilizing its assessment as a parameter of individualized dialysis schedules. Glomerular filtration rate measurement is only a dimension of kidney function neglecting the share of tubular function, with several dialytic limitations. The need for interdialytic urine collections to quantify residual kidney function, by the mean of urea and creatinine clearances, is cumbersome and prone to errors in dialysis patients. This review will approach residual kidney function estimation without urine collection, mainly with biomarkers such as cystatin C, beta-2 microglobulin, and beta-trace protein, as well as the behavior of these molecules on various dialysis modalities, their non-renal determinants, and its potential use for patient risk stratification. Multi-frequency bioimpedance analysis is also described as a promising approach to estimate residual kidney function, being an opportunity to highlight the relevant link between volume balance and diuresis. We conclude that standard glomerular filtration rate estimation formulas are not sufficiently accurate for residual kidney function assessment. There is a need for innovative tools that consider glomerular and interstitial function to be implement in clinical practice, therefore the new equations already developed and approached in this review should be validated in larger cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS One. 2016;11(7):–e0158765. https://doi.org/10.1371/journal.pone.0158765.

    Article  Google Scholar 

  2. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–81. https://doi.org/10.1016/s0140-6736(10)60674-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. Jama. 2014;311(24):2518–31. https://doi.org/10.1001/jama.2014.6634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Termorshuizen F, Dekker FW, van Manen JG, Korevaar JC, Boeschoten EW, Krediet RT. Relative contribution of residual renal function and different measures of adequacy to survival in hemodialysis patients: an analysis of the Netherlands Cooperative Study on the adequacy of Dialysis (NECOSAD)-2. J Am Soc Nephrol. 2004;15(4):1061–70.

    Article  Google Scholar 

  5. Ramspek CL, Nacak H, van Diepen M, van Buren M, Krediet RT, Rotmans JI, et al. Pre-dialysis decline of measured glomerular filtration rate but not serum creatinine-based estimated glomerular filtration rate is a risk factor for mortality on dialysis. Nephrol Dial Transplant. 2017;32(1):89–96. https://doi.org/10.1093/ndt/gfw236.

    Article  CAS  PubMed  Google Scholar 

  6. Wang M, Obi Y, Streja E, Rhee CM, Lau WL, Chen J, et al. Association of parameters of mineral bone disorder with mortality in patients on hemodialysis according to level of residual kidney function. Clin J Am Soc Nephrol. 2017;12(7):1118–27. https://doi.org/10.2215/cjn.11931116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peritoneal Dialysis Adequacy Work Group. Clinical practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis. 2006;48(Suppl 1):S98–129. https://doi.org/10.1053/j.ajkd.2006.04.006.

    Article  Google Scholar 

  8. Lindstrom V, Grubb A, Alquist Hegbrant M, Christensson A. Different elimination patterns of beta-trace protein, beta2-microglobulin and cystatin C in haemodialysis, haemodiafiltration and haemofiltration. Scand J Clin Lab Invest. 2008;68(8):685–91. https://doi.org/10.1080/00365510802047693.

    Article  CAS  PubMed  Google Scholar 

  9. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12(10):2158–62.

    CAS  PubMed  Google Scholar 

  10. Lowenstein J, Grantham JJ. Residual renal function: a paradigm shift. Kidney Int. 2017;91(3):561–5. https://doi.org/10.1016/j.kint.2016.09.052.

    Article  PubMed  Google Scholar 

  11. National Kidney Foundation. KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015;66(5):884–930. https://doi.org/10.1053/j.ajkd.2015.07.015.

    Article  Google Scholar 

  12. Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin J Am Soc Nephrol. 2009;4(5):914–20. https://doi.org/10.2215/cjn.03900808.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cheung AK, Rocco MV, Yan G, Leypoldt JK, Levin NW, Greene T, et al. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol. 2006;17(2):546–55. https://doi.org/10.1681/asn.2005020132.

    Article  CAS  PubMed  Google Scholar 

  14. Group tNS, Leffondre K, Loubère L, Boucquemont J, Stengel B, Metzger M, et al. Identifying subgroups of renal function trajectories. Nephrol Dial Transplant. 2017;32(suppl_2):ii185–93. https://doi.org/10.1093/ndt/gfw380.

    Article  CAS  Google Scholar 

  15. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med. 2006;354(23):2473–83. https://doi.org/10.1056/NEJMra054415.

    Article  CAS  PubMed  Google Scholar 

  16. Levey AS, Inker LA, Coresh J. GFR estimation: from physiology to public health. Am J Kidney Dis. 2014;63(5):820–34. https://doi.org/10.1053/j.ajkd.2013.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  Google Scholar 

  18. James G, Sealey J, Alderman M, Ljungman S, Mueller FB, Pecker M, et al. A longitudinal study of urinary creatinine and creatinine clearance in normal subjects: race, sex, and age differences. Am J Hypertens. 1988;1:124–31. https://doi.org/10.1093/ajh/1.2.124.

    Article  CAS  PubMed  Google Scholar 

  19. Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol. 2009;20(11):2305–13. https://doi.org/10.1681/asn.2009020171.

    Article  PubMed  Google Scholar 

  20. European Best Practice Guidelines Expert Group on Hemodialysis, European Renal Association. Section I. Measurement of renal function, when to refer and when to start dialysis. Nephrol Dial Transplant. 2002;17(Suppl 7):7–15.

    Google Scholar 

  21. Levey AS, Greene T, Kusek JW, Beck GJ, Group MS. Simplified equation to predict glomerular filtration rate from serum creatinine [Abstract]. J Am Soc Nephrol. 2000;11:155A.

    Google Scholar 

  22. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.

    Article  CAS  Google Scholar 

  23. Shafi T, Michels WM, Levey AS, Inker LA, Dekker FW, Krediet RT, et al. Estimating residual kidney function in dialysis patients without urine collection. Kidney Int. 2016;89(5):1099–110. https://doi.org/10.1016/j.kint.2015.10.011.

    Article  PubMed  PubMed Central  Google Scholar 

  24. White CA, Ghazan-Shahi S, Adams MA. Beta-trace protein: a marker of GFR and other biological pathways. Am J Kidney Dis. 2015;65(1):131–46. https://doi.org/10.1053/j.ajkd.2014.06.038.

    Article  CAS  PubMed  Google Scholar 

  25. Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28(5):830–8. https://doi.org/10.1038/ki.1985.205.

    Article  CAS  PubMed  Google Scholar 

  26. Hankins DA, Babb AL, Uvelli DA, Scribner BH. Creatinine degradation I: the kinetics of creatinine removal in patients with chronic kidney disease. Int J Artif Organs. 1981;4(1):35–9.

    CAS  PubMed  Google Scholar 

  27. Inker LA, Tighiouart H, Coresh J, Foster MC, Anderson AH, Beck GJ, et al. GFR estimation using β-trace protein and β(2)-microglobulin in CKD. Am J Kidney Dis. 2016;67(1):40–8. https://doi.org/10.1053/j.ajkd.2015.07.025.

    Article  CAS  PubMed  Google Scholar 

  28. Kabasawa A, Konta T, Suzuki N, Kamei K, Watanabe S, Araumi A, et al. The association between glomerular filtration rate estimated using different equations and mortality in the Japanese community-based population: the Yamagata (Takahata) study. Dis Markers. 2018;2018:9191832. https://doi.org/10.1155/2018/9191832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bukabau JB, Sumaili EK, Cavalier E, Pottel H, Kifakiou B, Nkodila A, et al. Performance of glomerular filtration rate estimation equations in Congolese healthy adults: the inopportunity of the ethnic correction. PLoS One. 2018;13(3):e0193384. https://doi.org/10.1371/journal.pone.0193384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Astor BC, Shafi T, Hoogeveen RC, Matsushita K, Ballantyne CM, Inker LA, et al. Novel markers of kidney function as predictors of ESRD, cardiovascular disease, and mortality in the general population. Am J Kidney Dis. 2012;59(5):653–62. https://doi.org/10.1053/j.ajkd.2011.11.042.

    Article  CAS  PubMed  Google Scholar 

  31. Foster MC, Coresh J, Hsu CY, Xie D, Levey AS, Nelson RG, et al. Serum beta-trace protein and beta2-microglobulin as predictors of esrd, mortality, and cardiovascular disease in adults with CKD in the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2016;68(1):68–76. https://doi.org/10.1053/j.ajkd.2016.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Filler G, Kusserow C, Lopes L, Kobrzynski M. Beta-trace protein as a marker of GFR—history, indications, and future research. Clin Biochem. 2014;47(13–14):1188–94. https://doi.org/10.1016/j.clinbiochem.2014.04.027.

    Article  CAS  PubMed  Google Scholar 

  33. Bhavsar NA, Appel LJ, Kusek JW, Contreras G, Bakris G, Coresh J, et al. Comparison of measured GFR, serum creatinine, cystatin C, and beta-trace protein to predict ESRD in African Americans with hypertensive CKD. Am J Kidney Dis. 2011;58(6):886–93. https://doi.org/10.1053/j.ajkd.2011.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liabeuf S, Lenglet A, Desjardins L, Neirynck N, Glorieux G, Lemke HD, et al. Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney Int. 2012;82(12):1297–303. https://doi.org/10.1038/ki.2012.301.

    Article  CAS  PubMed  Google Scholar 

  35. Onopiuk A, Tokarzewicz A, Gorodkiewicz E. Chapter two—cystatin C: a kidney function biomarker. In: Makowski GS (ed) Advances in clinical chemistry, vol 68. Elsevier, pp 57-69. 2015. doi:https://doi.org/10.1016/bs.acc.2014.11.007.

    Google Scholar 

  36. McMahon GM, Waikar SS. Biomarkers in nephrology: core curriculum 2013. Am J Kidney Dis. 2013;62(1):165–78. https://doi.org/10.1053/j.ajkd.2012.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fried LF, Katz R, Sarnak MJ, Shlipak MG, Chaves PHM, Jenny NS, et al. Kidney function as a predictor of noncardiovascular mortality. J Am Soc Nephrol. 2005;16(12):3728–35. https://doi.org/10.1681/asn.2005040384.

    Article  CAS  PubMed  Google Scholar 

  38. Ye Y, Gai X, Xie H, Jiao L, Zhang S. Impact of thyroid function on serum cystatin C and estimated glomerular filtration rate: a cross-sectional study. Endocr Pract. 2013;19(3):397–403. https://doi.org/10.4158/ep12282.Or.

    Article  PubMed  Google Scholar 

  39. Muntner P, Winston J, Uribarri J, Mann D, Fox CS. Overweight, obesity, and elevated serum cystatin C levels in adults in the United States. Am J Med. 2008;121(4):341–8. https://doi.org/10.1016/j.amjmed.2008.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhai JL, Ge N, Zhen Y, Zhao Q, Liu C. Corticosteroids significantly increase serum cystatin C concentration without affecting renal function in symptomatic heart failure. Clin Lab. 2016;62(1–2):203–7.

    CAS  PubMed  Google Scholar 

  41. Liu X, Foster MC, Tighiouart H, Anderson AH, Beck GJ, Contreras G, et al. Non-GFR determinants of low-molecular-weight serum protein filtration markers in CKD. Am J Kidney Dis. 2016;68(6):892–900. https://doi.org/10.1053/j.ajkd.2016.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grubb A, Björk J, Nyman U, Pollak J, Bengzon J, Östner G, et al. Cystatin C, a marker for successful aging and glomerular filtration rate, is not influenced by inflammation. Scand J Clin Lab Invest. 2011;71(2):145–9. https://doi.org/10.3109/00365513.2010.546879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Balik M, Jabor A, Waldauf P, Kolar M, Pavlisova M, Brest'an D, et al. Cystatin C as a marker of residual renal function during continuous hemodiafiltration. Kidney Blood Press Res. 2005;28(1):14–9. https://doi.org/10.1159/000080936.

    Article  CAS  PubMed  Google Scholar 

  44. Vilar E, Boltiador C, Viljoen A, Machado A, Farrington K. Removal and rebound kinetics of cystatin C in high-flux hemodialysis and hemodiafiltration. Clin J Am Soc Nephrol. 2014;9(7):1240–7. https://doi.org/10.2215/cjn.07510713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kabanda A, Goffin E, Bernard A, Lauwerys R, van Ypersele de Strihou C. Factors influencing serum levels and peritoneal clearances of low molecular weight proteins in continuous ambulatory peritoneal dialysis. Kidney Int. 1995;48(6):1946–52.

    Article  CAS  Google Scholar 

  46. Montini G, Amici G, Milan S, Mussap M, Naturale M, Rätsch I-M, et al. Middle molecule and small protein removal in children on peritoneal dialysis. Kidney Int. 2002;61(3):1153–9. https://doi.org/10.1046/j.1523-1755.2002.00216.x.

    Article  CAS  PubMed  Google Scholar 

  47. Steubl D, Roos M, Hettwer S, Angermann S, Wen M, Schmaderer C, et al. Comparison of peritoneal low-molecular-weight-protein-removal in CCPD and CAPD patients based on C-terminal agrin fragment clearance. Kidney Blood Press Res. 2016;41(2):175–85. https://doi.org/10.1159/000443419.

    Article  CAS  PubMed  Google Scholar 

  48. KDIGO. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2012;3(1):19–62. https://doi.org/10.1038/kisup.2012.64.

    Article  Google Scholar 

  49. Ahmadi F, Rahmani F, Lessan-Pezeshki M, Azmandian J. Utility of cystatin C-derived equations for evaluation of residual renal function in peritoneal dialysis patients. Ren Fail. 2015;37(1):50–6. https://doi.org/10.3109/0886022x.2014.964146.

    Article  CAS  PubMed  Google Scholar 

  50. Zhong H, Zhang W, Qin M, Gou Z, Feng P. Validation of cystatin C-based equations for evaluating residual renal function in patients on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2017;32(6):1032–40. https://doi.org/10.1093/ndt/gfw096.

    Article  CAS  PubMed  Google Scholar 

  51. Hoffmann A, Nimtz M, Conradt HS. Molecular characterization of β-trace protein in human serum and urine: a potential diagnostic marker for renal diseases. Glycobiology. 1997;7(4):499–506. https://doi.org/10.1093/glycob/7.4.499.

    Article  CAS  PubMed  Google Scholar 

  52. Wong J, Sridharan S, Berdeprado J, Vilar E, Viljoen A, Wellsted D, et al. Predicting residual kidney function in hemodialysis patients using serum beta-trace protein and beta2-microglobulin. Kidney Int. 2016;89(5):1090–8. https://doi.org/10.1016/j.kint.2015.12.042.

    Article  CAS  PubMed  Google Scholar 

  53. Donadio C. Serum and urinary markers of early impairment of GFR in chronic kidney disease patients: diagnostic accuracy of urinary beta-trace protein. Am J Physiol Ren Physiol. 2010;299(6):F1407–23. https://doi.org/10.1152/ajprenal.00507.2009.

    Article  CAS  Google Scholar 

  54. Selvin E, Juraschek SP, Eckfeldt J, Levey AS, Inker LA, Coresh J. Within-person variability in kidney measures. Am J Kidney Dis. 2013;61(5):716–22. https://doi.org/10.1053/j.ajkd.2012.11.048.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gerhardt T, Poge U, Stoffel-Wagner B, Klein B, Klehr HU, Sauerbruch T, et al. Serum levels of beta-trace protein and its association to diuresis in haemodialysis patients. Nephrol Dial Transplant. 2008;23(1):309–14. https://doi.org/10.1093/ndt/gfm510.

    Article  CAS  PubMed  Google Scholar 

  56. Shafi T, Parekh RS, Jaar BG, Plantinga LC, Oberai PC, Eckfeldt JH, et al. Serum β-trace protein and risk of mortality in incident hemodialysis patients. Clin J Am Soc Nephrol. 2012;7(9):1435–45. https://doi.org/10.2215/CJN.02240312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Craenenbroeck AH, Bragfors-Helin AC, Qureshi AR, Lindholm B, Sjoberg B, Anderstam B, et al. Plasma beta-trace protein as a marker of residual renal function: the effect of different hemodialysis modalities and intra-individual variability over time. Kidney Blood Press Res. 2017;42(5):877–85. https://doi.org/10.1159/000484537.

    Article  CAS  PubMed  Google Scholar 

  58. Schardijn GH, Statius van Eps LW. Beta 2-microglobulin: its significance in the evaluation of renal function. Kidney Int. 1987;32(5):635–41.

    Article  CAS  Google Scholar 

  59. Teruel-Briones JL, Fernandez-Lucas M, Rivera-Gorrin M, Ruiz-Roso G, Diaz-Dominguez M, Rodriguez-Mendiola N, et al. Progression of residual renal function with an increase in dialysis: haemodialysis versus peritoneal dialysis. Nefrologia. 2013;33(5):640–9. https://doi.org/10.3265/Nefrologia.pre2013.May.12038.

    Article  PubMed  Google Scholar 

  60. Vilar E, Boltiador C, Wong J, Viljoen A, Machado A, Uthayakumar A, et al. Plasma levels of middle molecules to estimate residual kidney function in Haemodialysis without urine collection. PLoS One. 2015;10(12):e0143813. https://doi.org/10.1371/journal.pone.0143813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int. 2003;64(6):2238–43. https://doi.org/10.1046/j.1523-1755.2003.00310.x.

    Article  CAS  PubMed  Google Scholar 

  62. Al-Wakeel JS, Hammad D, Memon NA, Tarif N, Shah I, Chaudhary A. Serum cystatin C: a surrogate marker for the characteristics of peritoneal membrane in dialysis patients. Saudi J Kidney Dis Transplant. 2009;20(2):227–31.

    Google Scholar 

  63. Brophy DF, Sowinski KM, Kraus MA, Moe SM, Klaunig JE, Mueller BA. Small and middle molecular weight solute clearance in nocturnal intermittent peritoneal dialysis. Peritoneal Dialysis Int: J Int Soc Peritoneal Dialysis. 1999;19(6):534–9.

    CAS  Google Scholar 

  64. White CA, Akbari A, Doucette S, Fergusson D, Hussain N, Dinh L, et al. A novel equation to estimate glomerular filtration rate using beta-trace protein. Clin Chem. 2007;53(11):1965–8. https://doi.org/10.1373/clinchem.2007.090126.

    Article  CAS  PubMed  Google Scholar 

  65. Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008;51(3):395–406. https://doi.org/10.1053/j.ajkd.2007.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tangri N, Inker LA, Tighiouart H, Sorensen E, Menon V, Beck G, et al. Filtration markers may have prognostic value independent of glomerular filtration rate. J Am Soc Nephrol. 2012;23(2):351–9. https://doi.org/10.1681/ASN.2011070663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoek FJ, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT. Estimation of residual glomerular filtration rate in dialysis patients from the plasma cystatin C level. Nephrol Dial Transplant. 2007;22(6):1633–8. https://doi.org/10.1093/ndt/gfm027.

    Article  CAS  PubMed  Google Scholar 

  68. Yang Q, Li R, Zhong Z, Mao H, Fan J, Lin J, et al. Is cystatin C a better marker than creatinine for evaluating residual renal function in patients on continuous ambulatory peritoneal dialysis? Nephrol Dial Transplant. 2011;26(10):3358–65. https://doi.org/10.1093/ndt/gfr045.

    Article  CAS  PubMed  Google Scholar 

  69. Beberashvili I, Yermolayeva T, Katkov A, Garra N, Feldman L, Gorelik O, et al. Estimating of residual kidney function by multi-frequency bioelectrical impedance analysis in hemodialysis patients without urine collection. Kidney Blood Press Res. 2018;43(1):98–109. https://doi.org/10.1159/000487106.

    Article  CAS  PubMed  Google Scholar 

  70. Lee MJ, Park JT, Park KS, Kwon YE, Oh HJ, Yoo TH, et al. Prognostic value of residual urine volume, GFR by 24-hour urine collection, and eGFR in patients receiving dialysis. Clin J Am Soc Nephrol. 2017;12(3):426–34. https://doi.org/10.2215/cjn.05520516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Castro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent does not apply to this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, I., Rodrigues, A. Estimating Residual Kidney Function: Present and Future Challenge. SN Compr. Clin. Med. 2, 140–148 (2020). https://doi.org/10.1007/s42399-019-00197-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-019-00197-9

Keywords

Navigation