Skip to main content
Log in

Interaction of phytohormone-producing rhizobia with sugarcane mini-setts and their effect on plant development

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Rhizobia are common members of plant microbiomes. This study aimed to evaluate if rhizobia can colonize sugarcane mini-setts and if and how they affect sprouting and morphological traits of plant development.

Methods

Bradyrhizobium sacchari strain BR 10280T and Rhizobium sp. strain BR 10268 were inoculated on sugarcane mini-setts and sprouting and plant development were evaluated. Bacterial production of hormones and their effect on plant growth were studied using HPLC and GC-MS / SIM and sugarcane sprouting assays. Colonization was investigated by colony counting and CLSM. Sequence analysis of recA, gyrB and rpoB genes was applied to refine the phylogenetic classification of strain BR 10268.

Results

BR 10268 had a positive effect on sugarcane mini-sett sprouting and shoot and root growth at 30 and 75 days after transplantation (DAT) and colonized sprouting mini-sett tissues. Few significant effects were observed for B. sacchari BR 10280T. Cell-free BR 10268 supernatant was found to contain gibberellins (GAs) and low concentrations of indole-3-acetic acid (IAA) and trans-zeatin; treatment of mini-setts with GA3 (0.15 or 1.5 μg mL−1) affected sprouting in a similar manner as BR 10268 inoculation. BR 10268 was found to be phylogenetically close to R. freirei.

Conclusions

Rhizobium sp. BR 10268 positively affects sprouting and growth of sugarcane, probably via production of plant hormonal substances, notably gibberellins, thus naturally occurring rhizobia may have potential as sugarcane inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CFU:

Colony forming units

TY:

Tryptone yeast extract

YMA:

Yeast extract mannitol agar

DAI:

Days after inoculation

DAT:

Days after transplanting

HPLC:

High performance liquid chromatography

GC-MS / SIM :

Gas chromatography-mass spectrometry in selective ionic monitoring mode

O.D.:

Optical density

GAx/GAs:

Gibberellin x / gibberellins

CLSM:

Confocal laser scanning microscopy

References

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Plant 175:532–538. https://doi.org/10.1007/BF00393076

    Article  CAS  Google Scholar 

  • Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: A practical guide for microbiologists. Plant Soil 384:413–431. https://doi.org/10.1007/s11104-014-2186-6

    Article  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11. https://doi.org/10.1023/A:1005964031159

    Article  Google Scholar 

  • Bei Q, Liu G, Tang H, Cadisch G, Rasche F, Xie Z (2013) Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15N in a flooded rice–soil system. Soil Biology and Biochemistry 59:25–31. https://doi.org/10.1016/j.soilbio.2013.01.008

    Article  CAS  Google Scholar 

  • Bishop PE, Guevara JG, Engelke JA, Evans JH (1976) Relation between glutamine synthetase and nitrogenase activities in the symbiotic association between Rhizobium japonicum and Glycine max. Plant Physiology 57:542–546. https://doi.org/10.1104/pp.57.4.542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Pakistan Journal of Botany l64:1644–1650. https://doi.org/10.2136/sssaj2000.6451644x

    Article  Google Scholar 

  • Bull TA (1964) The effect of temperature, variety and age on the response of Saccharum spp. to applied gibberellic acid. Australian Journal of Agricultural Research 15:77–84

    Article  CAS  Google Scholar 

  • Burbano CS, Liu Y, Rösner KL, Reis VM, Caballero-Mellado J, Reinhold-Hurek B, Hurek T (2011) Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environmental Microbiology Reports 3:383–389. https://doi.org/10.1111/j.1758-2229.2010.00238.x

    Article  CAS  PubMed  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLOS Biology 15:e2001793. https://doi.org/10.1371/journal.pbio.2001793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacciari I, Lippi D, Pietrosanti T, Pietrosanti W (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant Soil 115:151–153. https://doi.org/10.1007/BF02220706

    Article  CAS  Google Scholar 

  • Canellas LP, Balmori DM, Médici LO, Aguiar NO, Campostrini E, Rosa RCC, Façanha RR, Olivares FL (2013) A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366:119–132. https://doi.org/10.1007/s11104-012-1382-5

    Article  CAS  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation 33:440–459. https://doi.org/10.1007/s00344-013-9362-4

    Article  CAS  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Bâ A, Gillis M, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Applied and Environmental Microbiology 66:5437–5447. https://doi.org/10.1128/AEM.66.12.5437-5447.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology 71:7271–7278. https://doi.org/10.1128/AEM.71.11.7271-7278.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conab. (2018). Companhia Nacional de Abastecimento. In: Acompanhamento da safra brasileira: cana-de-açúcar, safra 2017/2018, terceiro levantamento. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/18_01_08_09_08_38_boletim_cana_dezembro_novo.pdf. Accessed 19 Feb 2018

  • Dall'agnol RF, Ribeiro RA, Ormeno-Orrillo E, Rogel MA, Delamuta JRM, Andrade DS, Martínez-Romero E, Hungria M (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. International Journal of Systematic and Evolutionary Microbiology 63:4167–4173. https://doi.org/10.1099/ijs.0.052928-0

    Article  CAS  PubMed  Google Scholar 

  • de Novais CB, Borges WL, da Conceicão Jesus E, Júnior OJS, Siqueira JO (2014) Inter-and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Applied Soil Ecology 76:78–86

    Article  Google Scholar 

  • Dillewijn VC (1952) Botany of sugarcane. The Chronica Botanica, Waltham, p 371. https://doi.org/10.1126/science.116.3013.333

    Book  Google Scholar 

  • Dong M, Yang Z, Cheng G, Peng L, Xu Q, Xu J (2018) Diversity of the bacterial microbiome in the roots of four Saccharum species: S. spontaneum, S. robustum, S. barberi, and S. officinarum. Frontiers in Microbiology 9:267. https://doi.org/10.3389/fmicb.2018.00267

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  Google Scholar 

  • Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Martinez-Romero E (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356:83–99. https://doi.org/10.1007/s11104-011-0812-0

    Article  CAS  Google Scholar 

  • Franco AA, Döbereiner J (1967) Especificidade hospedeira na simbiose com Rhizobium-Feijão e influência de diferentes nutrientes. Pesquisa Agropecuária Brasileira 2:467–474

    Google Scholar 

  • Garrido-Oter R, Nakano RT, Dombrowski N, Ma K-W, The AgBiome Team, McHardy AC, Schulze-Lefert P (2018) Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host & Microbe 24:155–167

    Article  CAS  Google Scholar 

  • Gu CT, Wang ET, Tian CF, Han TX, Chen WF, Sui XH, Chen WX (2008) Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. International Journal of Systematic and Evolutionary Microbiology 58:364–1368. https://doi.org/10.1099/ijs.0.65661-0

    Article  CAS  Google Scholar 

  • Gutiérrez-Zamora ML, Martınez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). Journal of Biotechnology 91:117–126. https://doi.org/10.1016/S0168-1656(01)00332-7

    Article  PubMed  Google Scholar 

  • Hedden P, Sponsel V (2015) A century of gibberellin research. Journal of Plant Growth Regulation 34:740–760. https://doi.org/10.1007/s00344-015-9546-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James EK, Olivares FL, de Oliveira AL, dos Reis FB Jr, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. Journal of Experimental Botany 52:747–760. https://doi.org/10.1093/jexbot/52.357.747

    Article  CAS  PubMed  Google Scholar 

  • Kanwar, R. S., & Kaur, H. (1977). Improving sprouting of stubble crop in low temperature areas. In: Proceedings 16th Gong ISSGT. The ISSCT Secretariat, Quatre-Bornes, pp. 1325–31

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    Article  CAS  Google Scholar 

  • Landell MGA, Campana MP, Figueiredo P, Xavier MA, Anjos IA, Dinardo-Miranda LL, Scarpari MS, Garcia JC, Bidóia MA, Silva DN, Mendonça JR, Kanthack RAD, Campos MF, Brancalião SR, Petri RH, Miguel PEM (2012) Sistema de multiplicação de cana-de-açúcar com uso de mudas pré-brotadas (MPB), oriundas de gemas individualizadas. Instituto Agronômico 109:16

    Google Scholar 

  • Martens M, Dawyndt P, Coopman R, Gillis M, de Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: A case study using 10 housekeeping genes in the genus Ensifer including former Sinorhizobium. International Journal of Systematic and Evolutionary Microbiology 58:200–214

    Article  CAS  Google Scholar 

  • Matos GF, Zilli JE, de Araújo JLS, Parma MM, Melo IS, Radl V, Rouws LFM (2017) Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots. Archives of Microbiology 199:1251–1258. https://doi.org/10.1007/s00203-017-1398-6

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CT, Dang LH, Nguyen DT, Tran KP, Giang BL, Tran NQ (2019) Effect of GA3 and Gly plant growth regulators on productivity and sugar content of sugarcane. Agriculture 9:136

    Article  CAS  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215. https://doi.org/10.1023/A:1016249704336

    Article  CAS  Google Scholar 

  • Oliveira ALM, Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32. https://doi.org/10.1007/s11104-006-0025-0

    Article  CAS  Google Scholar 

  • Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R, Nuntakij A, Teaumroong N (2015) Preference of endophytic bradyrhizobia in different rice cultivars and the implication of rice endophyte evolution. Applied and Environmental Microbiology 81:3049–3061. https://doi.org/10.1128/AEM.04253-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: From saprophytes to endosymbionts. Nature Reviews Microbiology 16:291. https://doi.org/10.1038/nrmicro.2017.171, 303

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reis VM, Baldani JI, Urquiaga S (2009) Recomendação de uma mistura de estirpes de cinco bactérias fixadoras de nitrogênio para inoculação de cana-de-açúcar: Gluconacetobacter diazotrophicus BR 11281, Herbaspirillum seropedicae, estirpe BR 11335, Herbaspirillum rubrisubalbicans, BR 11504; Azospirillum amazonense, BR 11145 e Burkholderia tropica BR 11366. Pesquisa Agropecuária Brasileira 30:1–4

    Google Scholar 

  • Rivilla R, Martín M, Lloret J (2017) What makes rhizobia rhizosphere colonizers? Environmental Microbiology 19:4379–4381. https://doi.org/10.1111/1462-2920.13917

    Article  PubMed  Google Scholar 

  • Rott, M. (2012). Structure and assembly cues of Arabidopsis root-inhabiting bacterial communities and comparative genomics of selected Rhizobium members. PhD dissertation. Cologne: University of Cologne.

  • Rouws LFM, Leite J, de Matos GF, Zilli JE, Coelho MRR, Xavier GR, Baldani JI (2014) Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. Environmental Microbiology Reports 6:354–363. https://doi.org/10.1111/1758-2229.12122

    Article  CAS  PubMed  Google Scholar 

  • Rouws LFM, Fischer D, Schmid M, Reis VM, Baldani JI, Hartmann A (2015) Biological nitrogen fixation. In: de Bruijn FJ (ed) Culture-independent assessment of diazotrophic bacteria in sugarcane and isolation of Bradyrhizobium spp. from field-grown sugarcane plants using legume trap plants, 2rd edn. Wiley, Hoboken, pp 955–966

    Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57:431–449. https://doi.org/10.1146/annurev.arplant.57.032905.105231

    Article  CAS  PubMed  Google Scholar 

  • Santos SG, Chaves VA, Ribeiro FS, Alves G, Reis VM (2018) Rooting and growth of pre-germinated sugarcane seedlings inoculated with diazotrophic bacteria. Applied Soil Ecology 133:12–13. https://doi.org/10.1016/j.apsoil.2018.08.015

    Article  Google Scholar 

  • Schultz N, Pereira W, Albuquerque Silva P, Baldani JI, Boddey RM, Alves BJR, Reis VM (2017) Yield of sugarcane varieties and their sugar quality grown in different soil types and inoculated with a diazotrophic bacteria consortium. Plant Production Science 20:366–374. https://doi.org/10.1080/1343943X.2017.1374869

    Article  CAS  Google Scholar 

  • Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, Da Silva MJ, Imperial J (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports 6:28774. https://doi.org/10.1038/srep28774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725–2729

    Article  CAS  Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones—roles for auxin and gibberellin. Critical Reviews in Plant Sciences 24:249–265. https://doi.org/10.1080/07352680500196108

    Article  CAS  Google Scholar 

  • Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes and Environments 23:89–93. https://doi.org/10.1264/jsme2.23.89

    Article  PubMed  Google Scholar 

  • Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): Expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449. https://doi.org/10.1007/s11104-010-0557-1

    Article  CAS  Google Scholar 

  • Urquiaga S, Cruz KH, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen-balance estimates. Soil Science Society of America Journal 56:105–114

    Article  Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF, Batista RB, Schultz N, Leite JM, Sá JM, Barbosa KP, Resende AS, Alves BJR, Boddey RM (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356:5–21

    Article  CAS  Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular Cell Biology 5:25–40

    CAS  Google Scholar 

  • Videira SS, e Silva MDCP, de Souza Galisa P, Dias ACF, Nissinen R, VLB D, van Elsas JD, Baldani JI, Salles JF (2013) Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum – A bioenergy crop. Plant Soil 373:737–754

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: The roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Molecular Phylogenetics and Evolution 34:29–54. https://doi.org/10.1016/j.ympev.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  • Vlitos AJ (1974) A review of plant growth regulating chemicals in sugarcane cultivation. Proceedings of the International Society of Sugarcane Technologists 15:932–937

    Google Scholar 

  • Wittwer SH, Bukovac M (1958) The effects of gibberellin on economic crops. Economic Botany 12:213–255

    Article  CAS  Google Scholar 

  • Wu Q, Peng X, Yang M, Zhang W, Dazzo FB, Uphoff N, Shen S (2018) Rhizobia promote the growth of rice shoots by targeting cell signaling, division and expansion. Plant Molecular Biology 97:507–523. https://doi.org/10.1007/s11103-018-0756-3

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Schmidt TM (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114. https://doi.org/10.1023/A:1004269902246

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, de Brujin F, Randemaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Functional Plant Biology 28:845–870. https://doi.org/10.1071/PP01069

    Article  CAS  Google Scholar 

  • Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2016) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environmental Microbiology Reports 18:1338–1351. https://doi.org/10.1111/1462-2920.12925

    Article  Google Scholar 

  • Yoneyama T, Terakado-Tonooka J, Minamisawa K (2017) Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: A review and synthesis. Soil Science & Plant Nutrition 63:578–590. https://doi.org/10.1080/00380768.2017.1407625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Embrapa, National Council for Scientific and Technological Development (CNPq, grants 420746/2016-1 and 308898/2017-6) and Newton Fund grant BB/N013476/1 “Understanding and Exploiting Biological Nitrogen Fixation for Improvement of Brazilian Agriculture”, co-funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Brazilian National Council for State Funding Agencies (CONFAP). The first author received a fellowship from Coordination of Superior Level Staff Improvement (CAPES). We thank Dr. Philip Poole for providing the plasmid pLMB426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc F. M. Rouws.

Additional information

Responsible Editor: Euan K. James.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 162 kb)

ESM 2

(TIF 438 kb)

ESM 3

(PDF 344 kb)

ESM 4

(PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, N.S., Matos, G.F., Meneses, C.H.S.G. et al. Interaction of phytohormone-producing rhizobia with sugarcane mini-setts and their effect on plant development. Plant Soil 451, 221–238 (2020). https://doi.org/10.1007/s11104-019-04388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04388-0

Keywords

Navigation