Skip to main content
Log in

Comparison between standard and transepithelial corneal crosslinking using a theranostic UV-A device

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess corneal concentration of riboflavin in two different corneal crosslinking protocols performed by a novel image-guided therapeutic (or “theranostic”) UV-A device.

Methods

Ten human eye bank donor tissues were used in this work. The tissues underwent corneal cross-linking according to the conventional treatment protocol (n = 5; 30 min of stromal soaking followed by 30 min of 3 mW/cm2 UV-A irradiance) and the iontophoresis-assisted transepithelial protocol (n = 5; soaking for 5 min at 1 mA/min and 9 min of 10 mW/cm2 UV-A irradiance) using a theranostic UV-A device (Vision Engineering Italy srl, Italy). The device provided real time assessment of riboflavin concentration by hyperspectral image analysis of the cornea. A 0.1% riboflavin hypotonic solution (Ricrolin+, Sooft Italia Spa, Italy) was used in all cases.

Results

Manual application of hypotonic riboflavin for 30 min into the stroma achieved greater corneal riboflavin concentration (425 ± 77 μg/cm3) than transepithelial delivery of riboflavin by corneal iontophoresis (195 ± 35 μg/cm3; P = 0.001). In both UV-A irradiation protocols, corneal riboflavin concentration decreased exponentially with a constant energy rate of 2.3 ± 0.5 J/cm2 and 1.8 ± 0.3 J/cm2 respectively. At the end of treatment, the average corneal concentration of riboflavin decreased by ≥ 85%, with values of 54 ± 29 μg/cm3 and 31 ± 9 μg/cm3 (P = 0.11), respectively.

Conclusion

Manual application of riboflavin onto the stroma achieved almost 50% greater concentration of riboflavin than transepithelial delivery by corneal iontophoresis. The theranostic UV-A device provided a novel approach to estimate corneal concentration of riboflavin non-invasively during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lombardo M, Micali N, Villari V et al (2016) All-optical method to assess stromal concentration of riboflavin in conventional and accelerated UV-A irradiation of the human cornea. Invest Opthalmol Vis Sci 57:476–483

    Article  CAS  Google Scholar 

  2. Lombardo G, Micali NL, Villari V et al (2017) Assessment of stromal riboflavin concentration-depth profile in nanotechnology-based transepithelial corneal cross-linking. J Cataract Refract Surg 43:680–686

    Article  Google Scholar 

  3. Gore DM, O'Brart DP, French P et al (2015) Comparison of different corneal iontophoresis protocols for promoting transepithelial riboflavin penetration. Invest Ophthalmol Vis Sci 56:7908–7914

    Article  CAS  Google Scholar 

  4. Lombardo G, Villari V, Micali N et al (2018) Non-invasive optical method for real-time assessment of intracorneal riboflavin concentration and efficacy of corneal crosslinking. J Biophotonics 11:e201800028

    Article  Google Scholar 

  5. Lombardo M, Lombardo G (2019) Non-invasive and real time assessment of riboflavin consumption in standard and accelerated corneal crosslinking. J Cataract Refract Surg 45:80–86

    Article  Google Scholar 

  6. Rosenblat E, Hersh PS (2016) Intraoperative corneal thickness change and clinical outcomes after corneal collagen crosslinking: standard crosslinking versus hypotonic riboflavin. J Cataract Refract Surg 42:596–605

    Article  Google Scholar 

  7. Kaya V, Utine CA, Yılmaz ÖF (2012) Intraoperative corneal thickness measurements during corneal collagen cross-linking with hypoosmolar riboflavin solution in thin corneas. Cornea 31:486–490

    Article  Google Scholar 

  8. Soeters N, Tahzib NG (2015) Standard and hypoosmolar corneal crosslinking in various pachymetry groups. Optom Vis Sci 92:329–336

    Article  Google Scholar 

  9. Gu S, Fan Z, Wang L et al (2014) Corneal collagen crosslinking with hypoosmolar riboflavin solution in keratoconic corneas. Biomed Res Int 2014:754182

    PubMed  PubMed Central  Google Scholar 

  10. Lombardo M, Pucci G, Barberi R et al (2015) Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. J Cataract Refract Surg 41:446–459

    Article  Google Scholar 

  11. Baiocchi S, Mazzotta C, Cerretani D et al (2009) Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg 35:893–899

    Article  Google Scholar 

  12. Lombardo M, Micali N, Villari V et al (2015) Ultraviolet a - visible spectral absorbance of the human cornea after transepithelial soaking with dextran-enriched and dextran-free riboflavin 0.1% ophthalmic solutions. J cataract refract Surg 41:2283–2290

    Article  Google Scholar 

  13. Caporossi A, Mazzotta C, Paradiso AL et al (2013) Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg 39:1157–1163

    Article  Google Scholar 

  14. Soeters N, Wisse RP, Godefrooij DA et al (2015) Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol 159:821–8.e3

    Article  Google Scholar 

  15. Shalchi Z, Wang X, Nanavaty MA (2015) Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye (Lond) 29:15–29

    Article  CAS  Google Scholar 

  16. Lombardo M, Serrao S, Rosati M et al (2014) Biomechanical changes of the human cornea following transepithelial corneal cross-linking using iontophoresis. J Cataract Surg 40:1706–1715

    Article  Google Scholar 

  17. Mastropasqua L, Nubile M, Calienno E et al (2014) Corneal crosslinking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol 157:623–30.e1

    Article  CAS  Google Scholar 

  18. Cassagne M, Laurent C, Rodrigues M et al (2016) Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci 57:594–603

    Article  CAS  Google Scholar 

  19. Lombardo M, Serrao S, Carbone G et al (2015) Corneal light backscattering following transepithelial corneal cross-linking using iontophoresis in donor human corneal tissues. J Cataract Refract Surg 41:635–643

    Article  Google Scholar 

  20. Bunsen RW, Roscoe HE (1859) Photochemische untersuchungen. Ann Phys 108(2):193

    Article  Google Scholar 

  21. Schwarzschild K (1900) On the law of reciprocity for bromide of silver gelatine. Astrophys J 11:89–91

    Article  Google Scholar 

  22. Spoerl E, Raiskup F, Kampik D et al (2010) Correlation between UV absorption and riboflavin concentration in different depths of the corneal and CXL. Curr Eye Res 35:1040–1041

    Article  Google Scholar 

  23. Kamaev P, Friedman MD, Sherr E, Muller D (2012) Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 53:2360–2367

    Article  Google Scholar 

  24. Reiser K, McCormick RJ, Rucker RB (1992) Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J 6:2439–2449

    Article  CAS  Google Scholar 

  25. McCall AS, Kraft S, Edelhauser HF et al (2010) Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci 51:129–138

    Article  Google Scholar 

  26. Lin J-T, Cheng D-C (2017) Modeling the efficacy profiles of UV-light activated corneal collagen crosslinking. PLoS One 12(4):e0175002

    Article  Google Scholar 

  27. Lin J-T (2018) A proposed concentration-controlled new protocol for optimal corneal crosslinking efficacy in the anterior stroma. Invest Ophthalmol Vis Sci 59:431–432

    Article  CAS  Google Scholar 

  28. Hayes S, Morgan SR, O'Brart DP et al (2016) A study of stromal riboflavin absorption in ex vivo porcine corneas using new and existing delivery protocols for corneal cross-linking. Acta Ophthalmol 94:e109–e117

    Article  CAS  Google Scholar 

  29. Iseli HP, Popp M, Seiler T et al (2010) Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm). J Refract Surg 27:195–201

    PubMed  Google Scholar 

  30. Lombardo M, Giannini D, Lombardo G et al (2017) Randomized controlled trial comparing transepithelial corneal cross-linking using iontophoresis with the Dresden protocol in progressive keratoconus. Ophthalmology 124:804–812

    Article  Google Scholar 

  31. Vinciguerra P, Romano V, Rosetta P et al (2016) Transepithelial Iontophoresis versus standard corneal collagen cross-linking: 1-year results of a prospective clinical study. J Refract Surg 32:672–678

    Article  Google Scholar 

  32. Bikbova G, Bikbov M (2016) Standard corneal collagen crosslinking versus transepithelial iontophoresis-assisted corneal crosslinking, 24 months follow-up: randomized control trial. Acta Ophthalmol 94:e600–e606

    Article  CAS  Google Scholar 

  33. Lombardo M, Serrao S, Lombardo G et al (2019) Two years outcomes of a randomized controlled trial of transepithelial corneal cross-linking with iontophoresis for keratoconus. J Cataract Refract Surg 45(7):992–1000

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Giuseppe Lupò (Consiglio Nazionale delle Ricerche, Istituto per i processi Chimico Fisici, Messina, Italy) for his support in assembling the electronic and mechanical part of the device and Chiara Mustarelli (Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica) for assistance in preparing documents for ethics committee approval. We also thank Sooft Italia Spa – Fidia Pharma group for providing the riboflavin solutions used in this work.

Funding

This study was funded by Lazio Innova POR FESR 2014-2020, grant no. A0114-2017-13,715.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lombardo.

Ethics declarations

Conflict of interest

Marco Lombardo and Giuseppe Lombardo declare that they are co-inventors on an issued patent (IT102016000007349) and a pending patent application (WO2017130043A1) related to this work and that they are shareholders of Vision Engineering Italy srl. Sebastiano Serrao declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardo, G., Serrao, S. & Lombardo, M. Comparison between standard and transepithelial corneal crosslinking using a theranostic UV-A device. Graefes Arch Clin Exp Ophthalmol 258, 829–834 (2020). https://doi.org/10.1007/s00417-019-04595-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04595-6

Keywords

Navigation