Skip to main content
Log in

Tracking of deliberately inoculated Leuconostoc mesenteroides and Lactobacillus brevis in kimchi

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to track intentionally inoculated Leuconostoc mesenteroides (11251) and Lactobacillus brevis (B151) strains in kimchi using random amplified polymorphic DNA (RAPD), repetitive element palindromic PCR (rep-PCR), and comparative housekeeping gene sequences analysis. The 16S rRNA gene provided species-level information for 30 colonies randomly picked from kimchi inoculated with strains 11251 and B151. Out of 30 colonies, one colony was matched to strain 11251, and two colonies were found identical to strain B151 reference strain in inoculated kimchi. Notably, among the three tools, strain 11251 was best tracked by comparative gene sequence analysis, while strain B151 tracked by all three tools. Our results suggest that the gene sequence analysis is a more reliable tool for tracking of desired strains than RAPD and rep-PCR. Based on the findings, it is recommended that gene sequence analysis could be used to avoid misuse of industrially useful strains within the growing food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bain JM, Tavanti A, Davidson AD, Jacobsen MD, Shaw D, Gow NAR, Odds FC. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J. Clinic. Microbiol. 45: 1469-1477 (2007)

    Article  CAS  Google Scholar 

  • Berthier F, Ehrlich SD. Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA. Int. J. Syst. Evol. Microbiol. 49: 997-1007 (1999)

    Article  CAS  Google Scholar 

  • Björkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, Korkeala HJ, Vandamme P. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. Nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 52: 141-148 (2002)

  • Chang JY, Chang HC. Improvements in the quality and shelf life of Kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a Starter. J. Food Sci. 75: 103-110 (2010)

    Article  Google Scholar 

  • Coppola R, Blaiotta G, Ercolini D. Dairy products. pp. 31-90. In: Molecular techniques in the microbial ecology of fermented foods. Cocolin L, Ercolini D (eds). Springer, New York (2008)

  • Dan T, Liu W, Sun Z, Lv Q, Xu H, Song Y, Zhang H. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia. BMC Microbiol. 14: 150 (2014)

    Article  Google Scholar 

  • Eeom YJ, Son SY, Jung DH, Hur MS, Kim CM, Park SY, Shin WC, Lee SJ, Auh JH, Kim GW, Park CS. Diversity analysis of Saccharomyces cerevisiae isolated from natural sources by multilocus sequence typing (MLST). Food Sci. Biotechnol. 27: 1119-1127 (2018)

    Article  CAS  Google Scholar 

  • Felis GE, Dellaglio F. Taxonomy of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 8: 44-61 (2007)

    CAS  PubMed  Google Scholar 

  • Fournier PE, Zhu Y, Ogata H, Raoult D. Use of highly variable intergenic spacer sequences for multispacer typing of Rickettsia conorii strains. J. Clinic. Microbiol. 42: 5757-5766 (2004)

    Article  CAS  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshunk P Jr. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Evol. Bacteriol. 42: 166-170 (1992)

    Article  CAS  Google Scholar 

  • Fusco V, Quero GM, Chieffi D, Franz CMAP. Identification of Lactobacillus brevis using a species-specific AFLP-derived marker. Int. J. Food Microbiol. 232: 90-94 (2016)

    Article  CAS  Google Scholar 

  • Gemechu T. Review on lactic acid bacteria function in milk fermentation and preservation. Afr. J. Food Sci. 9: 170-175 (2015)

    Article  CAS  Google Scholar 

  • Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification Lactobacillus species. FEMS Microbiol. Lett. 205: 31-36 (2001)

    Article  CAS  Google Scholar 

  • Hall TA. Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98 (1999)

    CAS  Google Scholar 

  • Hemme D, Foucaud-Scheunemann C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494 (2004)

    Article  Google Scholar 

  • Karahan AG, Başyiğit KG, Kart A, Sanlidere AH, Oner Z, Aydemir S, Erkuş O, Harsa S. Genotypic identification of some lactic acid bacteria by amplified fragment length polymorphism analysis and investigation of their potential usage as starter culture combinations in Beyaz cheese manufacture. J. Dairy Sci. 93: 1-11 (2010)

    Article  CAS  Google Scholar 

  • Kaur J, Lee S, Park YS, Sharma A. RAPD analysis of Leuconostoc mesenteroides strains associated with vegetables and food products from Korea. LWT Food Sci. Technol. 77: 383-388 (2017a)

  • Kaur J, Lee S, Sharma A, Park YS. DNA profiling of Leuconostoc mesenteroides strains isolated from fermented foods and farm produce in Korea by repetitive-element PCR. Food Sci. Biotechnol. 26: 1667-1673 (2017b)

  • Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 29: 393-409 (2005)

    Article  CAS  Google Scholar 

  • Leuschner RGK, Robinson TP, Hugas M, Cocconcelli PS, Richard-Forget F, Klein G, Licht TR, Nguyen-The C, Querol A, Richardson M, Suarez JE, Thrane U, Vlak JM, Von Wright A. Qualified presumption of safety (QPS): a generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends Food Sci. Technol. 21: 425-435 (2010)

    Article  CAS  Google Scholar 

  • Li W, Raoult D, Fournier P-E. Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33: 892-916 (2009)

    Article  CAS  Google Scholar 

  • Park SH, Jung JH, Seo DH, Lee HL, Kim GW, Park SY, Shin WC, Hong S, Park CS. Differentiation of lactic acid bacteria based on RFLP analysis of the tuf gene. Food Sci. Biotechnol. 21: 911-915 (2012)

    Article  CAS  Google Scholar 

  • Riccia DD, Bizzini F, Perilli M, Polimeni A, Trinchieri V, Amicosante G, Cifone M. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis. 13: 376-385 (2007)

    Article  Google Scholar 

  • Rönkä E, Malinen E, Saarela M, Rinta-Koski M, Aarnikunnas J, Palva A. Probiotic and milk technological properties of Lactobacillus brevis. Int. J. Food Microbiol. 83: 63-74 (2003)

    Article  Google Scholar 

  • Rushdy AA, Gomaa EZ. Antimicrobial compounds produced by probiotic Lactobacillus brevis isolated from dairy products. Ann. Microbiol. 63: 81-90 (2013)

    Article  CAS  Google Scholar 

  • Sabat AJ, Budimir A, Nashev D, Sá-Leão R, van Dijl J M, Laurent F, Grundmann H, Friedrich AW. On behalf of the ESCMID Study Group of Epidemiological Markers (ESGEM). Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 18(4): 20380 (2013)

  • Sarmiento-Rubiano L, Berger B, Moine D, Zuniga M, Pérez-Martínez G, Yebra M Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods. BMC Genomics 11: 504 (2010)

    Article  Google Scholar 

  • Singh S, Goswami P, Singh R, Heller KJ. Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: A review. LWT Food Sci. Technol. 42: 448-457 (2009)

    Article  CAS  Google Scholar 

  • Sharma A, Kaur J. Lee S, Park YS. Analysis of Leuconostoc citreum strains using multilocus sequence typing. Food Sci. Biotechnol. 27: 1755-1760 (2018)

    Article  CAS  Google Scholar 

  • Steele J, Broadbent J, Kok J. Perspective on the contribution of lactic acid bacteria to cheese flavor development. Curr. Opin. Biotechnol. 24: 135-141 (2013)

    Article  CAS  Google Scholar 

  • Temmerman R, Huys G, Swings J. Identification of lactic acid bacteria: culture dependent and culture-independent methods. Trends Food Sci. Technol. 15: 348-349 (2004)

    Article  CAS  Google Scholar 

  • Waki N, Matsumoto M, Fukui Y, Suganuma H. Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett. Appl. Microbiol. 59: 565-571 (2014)

    Article  CAS  Google Scholar 

  • Wassie M, Wassie T. Isolation and identification of Lactic Acid Bacteria from raw cow milk. Int. J. Adv. Res. Biol. Sci. 3: 44-49 (2016)

    CAS  Google Scholar 

  • Winkler J, Kao KC. Transcriptional analysis of Lactobacillus brevis to n-butanol and ferulic acid stress responses. PLoS ONE 6: e21438 (2011)

    Article  CAS  Google Scholar 

  • Zeller-Péronnet V, Brockmann E, Pavlovic M, Timke M, Busch U, Huber I. Potential and limitations of MALDI-TOF MS for discrimination within the species Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides. J. Verbr. Lebensm. 8: 205-214 (2013)

    Article  Google Scholar 

  • Zhang ZG, Ye ZQ, Yu L, Shi P. Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol. Biol. 11: 1-12 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA; Grant No. 314073-03-2-HD040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seo Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12195 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kaur, J., Lee, S. et al. Tracking of deliberately inoculated Leuconostoc mesenteroides and Lactobacillus brevis in kimchi. Food Sci Biotechnol 29, 817–824 (2020). https://doi.org/10.1007/s10068-019-00719-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00719-0

Keywords

Navigation