Skip to main content

Advertisement

Log in

Efficacy and safety of bone substitutes in lumbar spinal fusion: a systematic review and network meta-analysis of randomized controlled trials

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

A variety of alternative grafts to autologous iliac crest bone (ICBG) have been developed for lumbar spondylodesis, due to frequent complications following ICBG harvest. The optimal alternative graft to ICBG, however, remains elusive till now. The purpose of this study was to compare the efficacy and safety of fusion materials in lumbar degeneration diseases and to provide a ranking spectrum of the grafts.

Methods

Randomized controlled trials (RCTs) comparing different bone grafts in lumbar arthrodesis were eligible for inclusion. A network meta-analysis was performed for endpoints including fusion rate and incidence of adverse events.

Results

Twenty-seven RCTs involving 2488 patients and 13 available interventions were included. rhBMP-2 provided the highest fusion rate, being significantly superior to that of ICBG (OR = 0.21, p < 0.001), autograft local bone (ALB) (OR = 0.18, p = 0.022), rhBMP-7 (OR = 0.15, p < 0.001), allograft (OR = 0.13, p = 0.009), and DBM + ALB (OR = 0.07, p = 0.048). The treatment efficacy of allograft could be significantly enhanced by bone marrow concentrate (BMC) supplying (OR = 0.16, p = 0.010). ICBG ranks second on the frequency of complications, which is significantly higher than that of allograft (OR = 0.14, p = 0.041) and ALB (OR = 0.14, p = 0.030). All of the other comparisons showed similar efficacy and safety profiles between groups.

Conclusion

Ranking spectrums of the efficacy and safety for various bone grafts were provided graphically. Though rhBMP-2 was of the highest success rate, the application should be taken with proper caution because of the widely proposed life-threatening adverse events. ALB, ALB plus synthetic ceramic materials and allograft mixed with BMC were also proved to be potentially effective alternative graft to ICBG.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fritzell P, Hägg O, Jonsson D et al (2004) Cost-effectiveness of lumbar fusion and nonsurgical treatment for chronic low back pain in the Swedish Lumbar Spine Study: a multicenter, randomized, controlled trial from the Swedish Lumbar Spine Study Group. Spine (Phila Pa 1976) 29:421–434.

  2. Liu X, Wang Y, Qiu G et al (2014) A systematic review with meta-analysis of posterior interbody fusion versus posterolateral fusion in lumbar spondylolisthesis. Eur Spine J 23:43–56

    Article  PubMed  Google Scholar 

  3. Pimenta L, Marchi L, Oliveira L et al (2013) A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J Neurol Surg A Cent Eur Neurosurg 74:343–350

    Article  PubMed  Google Scholar 

  4. Hurlbert RJ, Alexander D, Bailey S et al (2013) rhBMP-2 for posterolateral instrumented lumbar fusion: a multicenter prospective randomized controlled trial. Spine (Phila Pa 1976) 38:2139–2148.

  5. Shen F, Samartzis D, An H (2005) Cell technologies for spinal fusion. Spine 5:231S–S239

    Article  Google Scholar 

  6. Marchesi DG (2000) Spinal fusions: bone and bone substitutes. Eur Spine J 9:372–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Myeroff C, Archdeacon M (2011) Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am 93:2227–2236

    Article  PubMed  Google Scholar 

  8. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity a statistical evaluation. Spine (Phila Pa 1976) 20:1055–1060.

  9. VonderHoeh NH, Voelker A, Heyde CE (2017) Results of lumbar spondylodeses using different bone grafting materials after transforaminal lumbar interbody fusion (TLIF). Eur Spine J 26:2835–2842

    Article  PubMed  Google Scholar 

  10. Boden SD, Zdeblick TA, Sandhu HS et al (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine (Phila Pa 1976) 25:376–381.

  11. Johnson RG (2014) Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine (Phila Pa 1976) 39:695–700.

  12. Simmonds MC, Brown JV, Heirs MK et al (2013) Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual-participant data. Ann Intern Med 158:877–889

    Article  PubMed  Google Scholar 

  13. Papakostidis C, Kontakis G, Bhandari M et al (2008) Efficacy of autologous iliac crest bone graft and bone morphogenetic proteins for posterolateral fusion of lumbar spine: a meta-analysis of the results. Spine (Phila Pa 1976) 33:E680–692.

  14. Fu R, Selph S, McDonagh M et al (2013) Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med 158:890–902

    Article  PubMed  Google Scholar 

  15. Ye F, Zeng Z, Wang J et al (2018) Comparison of the use of rhBMP-7 versus iliac crest autograft in single-level lumbar fusion: a meta-analysis of randomized controlled trials. J Bone Miner Metab 36:119–127

    Article  CAS  PubMed  Google Scholar 

  16. Parajón A, Alimi M, Navarro-Ramirez R et al (2017) Minimally Invasive Transforaminal Lumbar Interbody Fusion: Meta-analysis of the Fusion Rates. What is the Optimal Graft Material? Neurosurgery 81:958–971

    Article  PubMed  Google Scholar 

  17. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    Article  PubMed  PubMed Central  Google Scholar 

  18. Higgins JPT, Altman DG, Gøtzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

  19. Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration, 2011. Available from www. cochrane-handbook.org.

  20. Salanti G, Ades AE, Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171

    Article  PubMed  Google Scholar 

  21. Tan SH, Cooper NJ, Bujkiewicz S et al (2014) Novel presentational approaches were developed for reporting network meta-analysis. J Clin Epidemiol 67:672–680

    Article  PubMed  Google Scholar 

  22. Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho JH, Lee JH, Yeom JS et al (2017) Efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 in posterolateral lumbar fusion: an open, active-controlled, randomized, multicenter trial. Spine J 17:1866–1874

    Article  PubMed  Google Scholar 

  24. Delawi D, Jacobs W, van Susante JL et al (2016) OP-1 Compared with Iliac Crest Autograft in Instrumented Posterolateral Fusion: A Randomized, Multicenter Non-Inferiority Trial. J Bone Joint Surg Am 98:441–448

    Article  PubMed  Google Scholar 

  25. Kang J, An H, Hilibrand et al (2012) A Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine (Phila Pa 1976) 37:1083–1091.

  26. Delawi D, Dhert WJ, Rillardon L et al (2010) A prospective, randomized, controlled, multicenter study of osteogenic protein-1 in instrumented posterolateral fusions: report on safety and feasibility. Spine (Phila Pa 1976) 35:1185–91.

  27. Dawson E, Bae HW, Burkus JK et al (2009) Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. J Bone Joint Surg Am 91:1604–1613

    Article  PubMed  Google Scholar 

  28. Dimar JR 2nd, Glassman SD, Burkus JK et al (2009) Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am 91:1377–1386

    Article  PubMed  Google Scholar 

  29. Dai LY, Jiang LS (2008) Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Spine (Phila Pa 1976) 33:1299–1304.

  30. Glassman SD, Carreon LY, Djurasovic M et al (2008) RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine (Phila Pa 1976) 33:2843–2849.

  31. Dimar JR, Glassman SD, Burkus KJ et al (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine (Phila Pa 1976) 31:2534–2539.

  32. Kanayama M, Hashimoto T, Shigenobu K et al (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine (Phila Pa 1976) 31:1067–1074.

  33. Korovessis P, Koureas G, Zacharatos S et al (2005) Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur Spine J 14:630–638

    Article  PubMed  PubMed Central  Google Scholar 

  34. Glassman SD, Dimar JR, Carreon LY et al (2005) Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine (Phila Pa 1976) 30:1694–1698.

    Article  Google Scholar 

  35. Johnsson R, Strömqvist B, Aspenberg P (2002) Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine (Phila Pa 1976) 27:2654–2661.

    Article  Google Scholar 

  36. Vaccaro AR, Patel T, Fischgrund J et al (2004) A pilot study evaluating the safety and efficacy of OP-1 Putty (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine (Phila Pa 1976) 29:1885–1892.

  37. Vaccaro AR, Whang PG, Patel T et al (2008) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J 8:457–465

    Article  PubMed  Google Scholar 

  38. Coughlan M, Davies M, Mostert AK et al (2018) A Prospective, Randomized, Multicenter Study Comparing Silicated Calcium Phosphate versus BMP-2 Synthetic Bone Graft in Posterolateral Instrumented Lumbar Fusion for Degenerative Spinal Disorders. Spine (Phila Pa 1976) 43:E860-E868.

  39. Hart R, Komzák M, Okál F et al (2014) Allograft alone versus allograft with bone marrow concentrate for the healing of the instrumented posterolateral lumbar fusion. Spine J 14:1318–1324

    Article  PubMed  Google Scholar 

  40. Ohtori S, Suzuki M, Koshi T et al (2011) Single-level instrumented posterolateral fusion of the lumbar spine with a local bone graft versus an iliac crest bone graft: a prospective, randomized study with a 2-year follow-up. Eur Spine J 20:635–639

    Article  PubMed  Google Scholar 

  41. Nandyala SV, Marquez-Lara A, Fineberg SJ et al (2014) Prospective, randomized, controlled trial of silicate-substituted calcium phosphate versus rhBMP-2 in a minimally invasive transforaminal lumbar interbody fusion. Spine (Phila Pa 1976) 39:185–191.

  42. Huang H, Jiang C, Feng Z et al (2014) Comparing the process of creeping substitution between allograft bone and local bone grafting in lumbar interbody fusion. Eur Spine J 23:2068–2074

    Article  PubMed  Google Scholar 

  43. Sys J, Weyler J, Van Der Zijden T et al (2011) Platelet-rich plasma in mono-segmental posterior lumbar interbody fusion. Eur Spine J 20:1650–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Putzier M, Strube P, Funk JF et al (2009) Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study. Eur Spine J 18:687–695

    Article  PubMed  PubMed Central  Google Scholar 

  45. Burkus JK, Sandhu HS, Gornet MF (2006) Influence of rhBMP-2 on the healing patterns associated with allograft interbody constructs in comparison with autograft. Spine (Phila Pa 1976) 31:775–781.

  46. Haid RW Jr, Branch CL Jr, Alexander JT et al (2004) Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J 4:527–538

    Article  PubMed  Google Scholar 

  47. Cha CW, Boden SD (2003) Gene therapy applications for spine fusion. Spine 28:S74–84

    PubMed  Google Scholar 

  48. Agarwal R, Williams K, Umscheid CA et al (2009) Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. J Neurosurg Spine 11:729–740

    Article  PubMed  Google Scholar 

  49. Carlisle E, Fischgrund JS (2005) Bone morphogenetic proteins for spinal fusion. Spine J 5:240S–249S

    Article  PubMed  Google Scholar 

  50. Chen Z, Ba G, Shen T et al (2012) Recombinant human bone morphogenetic protein-2 versus autogenous iliac crest bone graft for lumbar fusion: a meta-analysis of ten randomized controlled trials. Arch Orthop Trauma Surg 132:1725–1740

    Article  PubMed  Google Scholar 

  51. Cahill KS, Chi JH, Day A et al (2009) Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins spinal fusion procedures. JAMA 302:58–66

    Article  CAS  PubMed  Google Scholar 

  52. Benglis D, Wang MY, Levi AD (2008) A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery 62:ONS423–431.

  53. Kanatani M, Sugimoto T, Kaji H et al (1995) Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner Res 10:1681–1690

    Article  CAS  PubMed  Google Scholar 

  54. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11:471–491

    Article  PubMed  Google Scholar 

  55. Rowan FE, O’Malley N, Poynton A (2012) RhBMP-2 use in lumbar fusion surgery is associated with transient immediate post-operative leg pain. Eur Spine J 21:1331–1337

    Article  PubMed  Google Scholar 

  56. Poorman GW, Jalai CM, Boniello A (2017) Bone morphogenetic protein in adult spinal deformity surgery: a meta-analysis. Eur Spine J 26:2094–2102

    Article  PubMed  Google Scholar 

  57. Wozney JM (2002) Overview of bone morphogenetic proteins. Spine (Phila Pa 1976) 27:S2–8

  58. Eder C, Chavanne A, Meissner J et al (2011) Autografts for spinal fusion: osteogenic potential of laminectomy bone chips and bone shavings collected via high speed drill. Eur Spine J 20:1791–1795

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee JH, Lee DH, Ryu HS et al (2003) Porous beta-calcium pyrophosphate as a bone graft substitute in a canine bone defect model. Key Eng Mater 240–2:399–402

    Article  Google Scholar 

  60. Zimmermann G, Moghaddam A (2011) Allograft bone matrix versus sythetic bone graft substitutes. Injury 42:S16–21

    Article  PubMed  Google Scholar 

  61. Miyazaki M, Tsumura H, Wang JC et al (2009) An update on bone substitutes for spinal fusion. Eur Spine J 18:783–799

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kraiwattanapong C, Boden SD, Louis-Ugbo J et al (2005) Comparison of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagen-ceramic sponge bulking agent as graft substitutes for lumbar spine fusion. Spine 30:1001–1007

    Article  PubMed  Google Scholar 

  63. Tortolani PJ, Park AE, Louis-Ugbo J et al (2004) The effects of doxorubicin (adriamycin) on spinal fusion: An experimental model of posterolateral lumbar spinal arthrodesis. Spine J 4:669–674

    Article  PubMed  Google Scholar 

  64. Goodwin CB, Brighton CT, Guyer RD et al (1999) A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24:1349–1356

    Article  CAS  PubMed  Google Scholar 

  65. Malloy KM, Hilibrand AS (2002) Autograft versus allograft in degenerative cervical disease. Clin Orthop Relat Res 394:27–38

    Article  Google Scholar 

  66. Brodsky AE, Kovalsky ES, Khalil MA et al (1991) Correlation of radiologic assessment of lumbar spine fusions with surgical exploration. Spine 16:S261–S265

    Article  CAS  PubMed  Google Scholar 

  67. Dawson EG, Clader TJ, Bassett LW et al (1985) A comparison of different methods used to diagnose pseudarthrosis following posterior spinal fusion for scoliosis. J Bone Joint Surg Am 67:1153–1159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to express special thanks to my partners for the encouragement and support they gave me during my study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-cheng Hu.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix

Appendix

See Table

Table 2 PRISMA NMA checklist of items to include when reporting a systematic review involving a network meta-analysis

2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Jt., Yang, Xg., Wang, F. et al. Efficacy and safety of bone substitutes in lumbar spinal fusion: a systematic review and network meta-analysis of randomized controlled trials. Eur Spine J 29, 1261–1276 (2020). https://doi.org/10.1007/s00586-019-06257-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-06257-x

Keywords

Navigation