Skip to main content

Advertisement

Log in

Demineralization detection in orthodontics using an ophthalmic optical coherence tomography device equipped with a multicolor fluorescence module

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Demineralizations such as white spot lesions are among the most prevalent side effects during orthodontic treatment. Fluorescence devices, including quantitative light-induced fluorescence (QLF), exploiting the intrinsic fluorescence of enamel and teeth and most recently optical coherence tomography (OCT) were introduced for early demineralization detection. In addition to near-infrared OCT scanning, multicolor modules allow for imaging with different laser wavelengths and the detection of reflective- and fluorescent light. The aim of this study was to evaluate a modified multicolor ophthalmic OCT device for the detection of early carious lesions in vitro and in vivo.

Materials and methods

Twenty-seven extracted lesion free human teeth were randomly assigned to three different demineralization protocols. Carious lesion detection was performed using macrophotography, OCT, and reflectance/fluorescence imaging using green laser and blue laser light. In addition, teeth of 5 orthodontic patients were OCT scanned, and fluorescence imaging using blue laser light was performed to assess demineralization after orthodontic therapy.

Results

Both in vitro and in vivo, OCT allowed for precise determination of lesion depth and enamel loss. Fluorescence imaging using blue laser light was most sensitive for the detection of early demineralization in vitro and in vivo. However, established and severe demineralizations were also reliably detected by macrophotography in vitro and in vivo.

Conclusion

Demineralization can be detected with high sensitivity using blue fluorescence imaging with multicolor OCT devices.

Clinical relevance

In the future, OCT fluorescence imaging might be considered for longitudinal monitoring of dental hard tissue during orthodontic treatment in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sundararaj D, Venkatachalapathy S, Tandon A, Pereira A (2015) Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: a meta-analysis. J Int Soc Prev Community Dent 5(6):433–439. https://doi.org/10.4103/2231-0762.167719

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiang H, Tai BJ, Du MQ (2015) Patterns and risk factors for white spot lesions in orthodontic patients with fixed appliances. Chin J Dent Res 18(3):177–183

    PubMed  Google Scholar 

  3. Bock NC, Seibold L, Heumann C, Gnandt E, Roder M, Ruf S (2017) Changes in white spot lesions following post-orthodontic weekly application of 1.25 per cent fluoride gel over 6 months-a randomized placebo-controlled clinical trial. Part II: clinical data evaluation. Eur J Orthod 39(2):144–152. https://doi.org/10.1093/ejo/cjw061

    Article  PubMed  Google Scholar 

  4. Enaia M, Bock N, Ruf S (2011) White-spot lesions during multibracket appliance treatment: a challenge for clinical excellence. Am J Orthod Dentofacial Orthop 140(1):e17–e24. https://doi.org/10.1016/j.ajodo.2010.12.016

    Article  PubMed  Google Scholar 

  5. Hochli D, Hersberger-Zurfluh M, Papageorgiou SN, Eliades T (2017) Interventions for orthodontically induced white spot lesions: a systematic review and meta-analysis. Eur J Orthod 39(2):122–133. https://doi.org/10.1093/ejo/cjw065

    Article  PubMed  Google Scholar 

  6. Benson PE, Parkin N, Dyer F, Millett DT, Furness S, Germain P (2013) Fluorides for the prevention of early tooth decay (demineralised white lesions) during fixed brace treatment. Cochrane Database Syst Rev 12:CD003809. https://doi.org/10.1002/14651858.CD003809.pub3

    Article  Google Scholar 

  7. Kirschneck C, Christl JJ, Reicheneder C, Proff P (2016) Efficacy of fluoride varnish for preventing white spot lesions and gingivitis during orthodontic treatment with fixed appliances-a prospective randomized controlled trial. Clin Oral Investig 20(9):2371–2378. https://doi.org/10.1007/s00784-016-1730-6

    Article  PubMed  Google Scholar 

  8. Stecksen-Blicks C, Renfors G, Oscarson ND, Bergstrand F, Twetman S (2007) Caries-preventive effectiveness of a fluoride varnish: a randomized controlled trial in adolescents with fixed orthodontic appliances. Caries Res 41(6):455–459. https://doi.org/10.1159/000107932

    Article  PubMed  Google Scholar 

  9. Arends J, ten Bosch JJ (1992) Demineralization and remineralization evaluation techniques. J Dent Res 71:924–928

    Article  Google Scholar 

  10. Benson PE, Higham SM, Pender N (2003) An in vitro assessment using transverse microradiography of the effect on mineral loss of etching enamel for in situ studies. Orthod Craniofac Res 6(4):242–249

    Article  Google Scholar 

  11. Damen JJ, Exterkate RA, ten Cate JM (1997) Reproducibility of TMR for the determination of longitudinal mineral changes in dental hard tissues. Adv Dent Res 11(4):415–419. https://doi.org/10.1177/08959374970110040601

    Article  PubMed  Google Scholar 

  12. Silva PF, de Holanda Ferreira DA, Meira KR, Forte FD, Chaves AM, de Sousa FB (2014) Dentin reactions to caries are misinterpreted by histological "gold standards". F1000Res 3:13. doi:https://doi.org/10.12688/f1000research.3-13.v1

  13. Ten Bosch JJ, Angmar-Mansson B (1991) A review of quantitative methods for studies of mineral content of intra-oral caries lesions. J Dent Res 70(1):2–14. https://doi.org/10.1177/00220345910700010301

    Article  PubMed  Google Scholar 

  14. Campos SAG, Vieira MLO, de Sousa FB (2017) Correlation between ICDAS and histology: differences between stereomicroscopy and microradiography with contrast solution as histological techniques. PLoS One 12(8):e0183432. https://doi.org/10.1371/journal.pone.0183432

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heinrich-Weltzien R, Kühnisch J, van der Veen M, de Josselin de Jong E, Stösser L (2003) Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner. Quintessence Int 34(3):181–188

    PubMed  Google Scholar 

  16. Kuhnisch J, Heinrich-Weltzien R (2004) Quantitative light-induced fluorescence (QLF)--a literature review. Int J Comput Dent 7(4):325–338

    PubMed  Google Scholar 

  17. Knosel M, Bojes M, Jung K, Ziebolz D (2012) Increased susceptibility for white spot lesions by surplus orthodontic etching exceeding bracket base area. J Orofac Orthop 141(5):574–582. https://doi.org/10.1016/j.ajodo.2011.11.017

    Article  Google Scholar 

  18. Ko HY, Kang SM, Kim HE, Kwon HK, Kim BI (2015) Validation of quantitative light-induced fluorescence-digital (QLF-D) for the detection of approximal caries in vitro. J Dent 43(5):568–575. https://doi.org/10.1016/j.jdent.2015.02.010

    Article  PubMed  Google Scholar 

  19. Tatano R, Ehrlich EE, Berkels B, Sirazitdinova E, Deserno TM, Fritz UB (2017) Quantitative light-induced fluorescence images and digital photographs- reproducibility of manually marked demineralisations. J Orofac Orthop 78(2):137–143. https://doi.org/10.1007/s00056-016-0069-6

    Article  PubMed  Google Scholar 

  20. Colston B, Sathyam U, Dasilva L, Everett M, Stroeve P, Otis L (1998) Dental OCT. Opt Express 3(6):230–238

    Article  Google Scholar 

  21. Colston BW Jr, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H (1998) Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt 37(16):3582–3585

    Article  Google Scholar 

  22. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS (1999) Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt 38(10):2092–2096

    Article  Google Scholar 

  23. Louie T, Lee C, Hsu D, Hirasuna K, Manesh S, Staninec M, Darling CL, Fried D (2010) Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med 42(10):738–745. https://doi.org/10.1002/lsm.21013

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chan KH, Tom H, Lee RC, Kang H, Simon JC, Staninec M, Darling CL, Pelzner RB, Fried D (2016) Clinical monitoring of smooth surface enamel lesions using CP-OCT during nonsurgical intervention. Lasers Surg Med 48(10):915–923. https://doi.org/10.1002/lsm.22500

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nee A, Chan K, Kang H, Staninec M, Darling CL, Fried D (2014) Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography. J Dent 42(5):547–555. https://doi.org/10.1016/j.jdent.2014.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  26. Machoy M, Seeliger J, Szyszka-Sommerfeld L, Koprowski R, Gedrange T, Wozniak K (2017) The use of optical coherence tomography in dental diagnostics: a state-of-the-art review. J Healthc Eng 2017:7560645. https://doi.org/10.1155/2017/7560645

    Article  PubMed  PubMed Central  Google Scholar 

  27. Amaechi BT, Podoleanu A, Higham SM, Jackson DA (2003) Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J Biomed Opt 8(4):642–647. https://doi.org/10.1117/1.1606685

    Article  PubMed  Google Scholar 

  28. Turkistani A, Nakashima S, Shimada Y, Tagami J, Sadr A (2015) Microgaps and demineralization Progress around composite restorations. J Dent Res 94(8):1070–1077. https://doi.org/10.1177/0022034515589713

    Article  PubMed  Google Scholar 

  29. Maia AM, de Freitas AZ, de Campello LS, Gomes AS, Karlsson L (2016) Evaluation of dental enamel caries assessment using quantitative light induced fluorescence and optical coherence tomography. J Biophotonics 9(6):596–602. https://doi.org/10.1002/jbio.201500111

    Article  PubMed  Google Scholar 

  30. Espigares J, Sadr A, Hamba H, Shimada Y, Otsuki M, Tagami J, Sumi Y (2015) Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography. J Med Imaging (Bellingham) 2(1):014001. https://doi.org/10.1117/1.JMI.2.1.014001

    Article  Google Scholar 

  31. Golde J, Tetschke F, Walther J, Rosenauer T, Hempel F, Hannig C, Koch E, Kirsten L (2018) Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography. J Biomed Opt 23(7):1–8. https://doi.org/10.1117/1.JBO.23.7.071203

    Article  PubMed  Google Scholar 

  32. Borisova E, Uzunov T, Avramov L (2006) Laser-induced autofluorescence study of caries model in vitro. Lasers Med Sci 21(1):34–41. https://doi.org/10.1007/s10103-005-0365-7

    Article  PubMed  Google Scholar 

  33. van der Veen MH, ten Bosch JJ (1995) Autofluorescence of bulk sound and in vitro demineralized human root dentin. Eur J Oral Sci 103(6):375–381

    Article  Google Scholar 

  34. Johnson NW (1966) Differences in the shape of human enamel crystallites after partial destruction by caries, EDTA and various acids. Arch Oral Biol 11(12):1421–1424

    Article  Google Scholar 

  35. Tabatabaei N, Mandelis A, Amaechi BT (2011) Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth. J Biomed Opt 16(7):071402. https://doi.org/10.1117/1.3564890

    Article  PubMed  Google Scholar 

  36. Yu OY, Zhao IS, Mei ML, Lo EC-M, Chu C-H (2017) A review of the common models used in mechanistic studies on demineralization-remineralization for Cariology research. Dentistry Journal 5(2):20

    Article  Google Scholar 

  37. Sen S, Erber R, Kunzmann K, Kirschner S, Weyer V, Schilling L, Brockmann MA, Rues S, Orhan G, Lux CJ, Zingler S (2018) Assessing abrasion of orthodontic surface sealants using a modified ophthalmic optical coherence tomography device. Clin Oral Investig. https://doi.org/10.1007/s00784-018-2410-5

  38. Alsayed EZ, Hariri I, Sadr A, Nakashima S, Bakhsh TA, Shimada Y, Sumi Y, Tagami J (2015) Optical coherence tomography for evaluation of enamel and protective coatings. Dent Mater J 34(1):98–107. https://doi.org/10.4012/dmj.2014-215

    Article  PubMed  Google Scholar 

  39. Meng Z, Yao XS, Yao H, Liang Y, Liu T, Li Y, Wang G, Lan S (2009) Measurement of the refractive index of human teeth by optical coherence tomography. J Biomed Opt 14(3):034010. https://doi.org/10.1117/1.3130322

    Article  PubMed  Google Scholar 

  40. Tezuka H, Shimada Y, Matin K, Ikeda M, Sadr A, Sumi Y, Tagami J (2016) Assessment of cervical demineralization induced by Streptococcus mutans using swept-source optical coherence tomography. J Med Imaging (Bellingham) 3(1):014504. https://doi.org/10.1117/1.JMI.3.1.014504

    Article  Google Scholar 

  41. Ten Cate JM (2012) Novel anticaries and remineralizing agents: prospects for the future. J Dent Res 91(9):813–815. https://doi.org/10.1177/0022034512455032

    Article  PubMed  Google Scholar 

  42. Aden A, Anthony A, Brigi C, Merchant MS, Siraj H, Tomlins PH (2017) Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography. J Biomed Opt 22(7):76020. https://doi.org/10.1117/1.JBO.22.7.076020

    Article  PubMed  Google Scholar 

  43. Gimenez T, Piovesan C, Braga MM, Raggio DP, Deery C, Ricketts DN, Ekstrand KR, Mendes FM (2015) Visual inspection for caries detection: a systematic review and meta-analysis. J Dent Res 94(7):895–904. https://doi.org/10.1177/0022034515586763

    Article  PubMed  Google Scholar 

  44. Alfano RR, Yao SS (1981) Human teeth with and without dental caries studied by visible luminescent spectroscopy. J Dent Res 60(2):120–122. https://doi.org/10.1177/00220345810600020401

    Article  PubMed  Google Scholar 

  45. Pretty IA (2006) Caries detection and diagnosis: novel technologies. J Dent 34(10):727–739. https://doi.org/10.1016/j.jdent.2006.06.001

    Article  PubMed  Google Scholar 

  46. Jones RS, Fried D (2006) Remineralization of enamel caries can decrease optical reflectivity. J Dent Res 85(9):804–808. https://doi.org/10.1177/154405910608500905

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee YK (2015) Fluorescence properties of human teeth and dental calculus for clinical applications. J Biomed Opt 20(4):040901. https://doi.org/10.1117/1.JBO.20.4.040901

    Article  PubMed  Google Scholar 

  48. Schwendicke F, Stolpe M, Meyer-Lueckel H, Paris S (2015) Detecting and treating occlusal caries lesions: a cost-effectiveness analysis. J Dent Res 94(2):272–280. https://doi.org/10.1177/0022034514561260

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stahl J, Kang H, Fried D (2010) Imaging simulated secondary caries lesions with cross polarization OCT. Proc SPIE Int Soc Opt Eng 7549:754905

    PubMed  PubMed Central  Google Scholar 

  50. Lammeier C, Li Y, Lunos S, Fok A, Rudney J, Jones RS (2012) Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging. J Biomed Opt 17(10):106002. https://doi.org/10.1117/1.JBO.17.10.106002

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lenton P, Rudney J, Chen R, Fok A, Aparicio C, Jones RS (2012) Imaging in vivo secondary caries and ex vivo dental biofilms using cross-polarization optical coherence tomography. Dental materials : official publication of the Academy of Dental Materials 28(7):792–800. https://doi.org/10.1016/j.dental.2012.04.004

    Article  Google Scholar 

  52. Holtzman JS, Osann K, Pharar J, Lee K, Ahn YC, Tucker T, Sabet S, Chen Z, Gukasyan R, Wilder-Smith P (2010) Ability of optical coherence tomography to detect caries beneath commonly used dental sealants. Lasers Surg Med 42(8):752–759. https://doi.org/10.1002/lsm.20963

    Article  PubMed  PubMed Central  Google Scholar 

  53. Walther J, Schnabel C, Tetschke F, Rosenauer T, Golde J, Ebert N, Baumann M, Hannig C, Koch E (2018) In vivo imaging in the oral cavity by endoscopic optical coherence tomography. J Biomed Opt 23(7):1–13. https://doi.org/10.1117/1.JBO.23.7.071207

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gerhard Zinser (in memoriam), Ali Tafreshi, Dr. Tilman Otto, Joerg Fischer, Dr. Julian Weichsel, Dr. Stefan Schmidt and Ege Ilicak (Heidelberg Engineering, Heidelberg, Germany) for providing OCT equipment and software.

Funding

We gratefully appreciate the financial support from the Wissenschaftsfond of the German Society of Orthodontics (DGKFO 113/1016) and from the Physician Scientist Fellowship Program of the Medical Faculty of the University of Heidelberg to S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Şen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol, including the use of extracted human teeth, was approved by the ethics committee of the Medical Faculty of Heidelberg University (approval no.: S-370/2015). Trial registration: NCT03753256. The study conformed to the Declaration of Helsinki and was performed according to the guidelines of Good Clinical Practice. Participants were recruited between May 2017 and December 2017 by interns and residents, including authors of the present study of the Department of Orthodontics and Dentofacial Orthopaedics, Dental School, University of Heidelberg.

Informed consent

Before participation, all patients or their parents/legal guardians received oral and written study information and signed a written consent form.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şen, S., Erber, R., Deurer, N. et al. Demineralization detection in orthodontics using an ophthalmic optical coherence tomography device equipped with a multicolor fluorescence module . Clin Oral Invest 24, 2579–2590 (2020). https://doi.org/10.1007/s00784-019-03116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03116-3

Keywords

Navigation