Skip to main content

Advertisement

Log in

Modification of the RANKL-RANK-binding site for the immunotherapeutic treatment of osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Here, we proposed the use of mutated RANKL as an immunogen for active immunization and to induce anti-cytokine antibodies for osteoporosis treatment.

Introduction

Osteoclasts are responsible for bone resorption in bone-related disorders. Anti-cytokine therapeutic antibodies such as denosumab are effective for the treatment of osteoporosis. However, problems with antibody manufacturing and the immunogenicity caused by multiple antibody doses have led to the use of auto-cytokines as immunogens to induce anti-cytokine antibodies.

Methods

RANKL was point-mutated based on the crystal structure of the complex of RANKL and its receptor RANK.

Results

As a proof of concept, immunization with RANKL produced high levels of specific antibodies and blocked osteoclast development in vitro and inhibited osteoporosis in RANKL-treated or ovariectomized mouse models.

Conclusions

The results demonstrate the successful use of mutated RANKL as an immunogen for the induction of anti-RANKL immune response. This strategy is useful in general anti-cytokine immunotherapy to avoid toxic side effects of osteoporosis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Everts V, Delaisse JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W (2002) The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. J Bone Miner Res 17:77–90

    Article  CAS  Google Scholar 

  2. Cao X (2011) Targeting osteoclast-osteoblast communication. Nat Med 17:1344–1346

    Article  CAS  Google Scholar 

  3. Tanaka Y, Nakayamada S, Okada Y (2005) Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy 4:325–328

    Article  CAS  Google Scholar 

  4. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    Article  CAS  Google Scholar 

  5. Burgess TL, Qian Y, Kaufman S et al (1999) The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 145:527–538

    Article  CAS  Google Scholar 

  6. Lo Iacono N, Blair HC, Poliani PL et al (2012) Osteopetrosis rescue upon RANKL administration to Rankl(-/-) mice: a new therapy for human RANKL-dependent ARO. J Bone Miner Res 27:2501–2510

    Article  CAS  Google Scholar 

  7. Warren JT, Zou W, Decker CE, Rohatgi N, Nelson CA, Fremont DH, Teitelbaum SL (2015) Correlating RANK ligand/RANK binding kinetics with osteoclast formation and function. J Cell Biochem 116:2476–2483

    Article  CAS  Google Scholar 

  8. Lam J, Nelson CA, Ross FP, Teitelbaum SL, Fremont DH (2001) Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest 108:971–979

    Article  CAS  Google Scholar 

  9. Takayanagi H, Kim S, Matsuo K et al (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416:744–749

    Article  CAS  Google Scholar 

  10. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  CAS  Google Scholar 

  11. Le Buanec H, Bensussan A, Bagot M, Gallo RC, Zagury D (2012) Active and passive anticytokine immune therapies: current status and development. Adv Immunol 115:187–227

    Article  Google Scholar 

  12. Ratsimandresy RA, Rappaport J, Zagury JF (2009) Anti-cytokine therapeutics: history and update. Curr Pharm Des 15:1998–2025

    Article  CAS  Google Scholar 

  13. Liu C, Zhao Y, He W et al (2015) A RANKL mutant used as an inter-species vaccine for efficient immunotherapy of osteoporosis. Sci Rep 5:14150

    Article  CAS  Google Scholar 

  14. Kinoshita H, Miyakoshi N, Kashiwagura T, Kasukawa Y, Sugimura Y, Shimada Y (2017) Comparison of the efficacy of denosumab and bisphosphonates for treating secondary osteoporosis in patients with rheumatoid arthritis. Mod Rheumatol 27:582–586

    Article  CAS  Google Scholar 

  15. Kuriakose A, Chirmule N, Nair P (2016) Immunogenicity of Biotherapeutics: Causes and Association with Posttranslational Modifications. J Immunol Res 2016:1298473

    Article  Google Scholar 

  16. Miyazaki K (2003) Creating random mutagenesis libraries by megaprimer PCR of whole plasmid (MEGAWHOP). Methods Mol Biol 231:23–28

    CAS  PubMed  Google Scholar 

  17. Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    Article  CAS  Google Scholar 

  18. Sohn H, Ko Y, Park M, Kim B, Kim O, Kim D, Moon YL, Lim W (2016) Cloning and expression of recombinant macrophage-colony stimulating factor-A progressive strategy for economical production. Biotechnol Bioprocess Eng 21:446–452

    Article  CAS  Google Scholar 

  19. Sohn H, Ko Y, Park M et al (2015) Effects of light-emitting diode irradiation on RANKL-induced osteoclastogenesis. Lasers Surg Med 47:745–755

    Article  Google Scholar 

  20. Bargman R, Huang A, Boskey AL, Raggio C, Pleshko N (2010) RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect Tissue Res 51:123–131

    Article  CAS  Google Scholar 

  21. Body JJ, Greipp P, Coleman RE et al (2003) A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97:887–892

    Article  Google Scholar 

  22. Higgs JT, Jarboe JS, Lee JH, Chanda D, Lee CM, Deivanayagam C, Ponnazhagan S (2015) Variants of Osteoprotegerin Lacking TRAIL Binding for Therapeutic Bone Remodeling in Osteolytic Malignancies. Mol Cancer Res 13:819–827

    Article  CAS  Google Scholar 

  23. Ta HM, Nguyen GT, Jin HM, Choi J, Park H, Kim N, Hwang HY, Kim KK (2010) Structure-based development of a receptor activator of nuclear factor-kappaB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis. Proc Natl Acad Sci U S A 107:20281–20286

    Article  CAS  Google Scholar 

  24. Krishna M, Nadler SG (2016) Immunogenicity to Biotherapeutics - The Role of Anti-drug Immune Complexes. Front Immunol 7:21

    Article  Google Scholar 

  25. Semerano L, Assier E, Boissier MC (2012) Anti-cytokine vaccination: a new biotherapy of autoimmunity? Autoimmun Rev 11:785–786

    Article  CAS  Google Scholar 

  26. Bachmann MF, Dyer MR (2004) Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat Rev Drug Discov 3:81–88

    Article  CAS  Google Scholar 

  27. Wu T, Li F, Sha X, Li F, Zhang B, Ma W, Liu M, Yang W, Li H, Tao H (2018) A novel recombinant RANKL vaccine prepared by incorporation of an unnatural amino acid into RANKL and its preventive effect in a murine model of collagen-induced arthritis. Int Immunopharmacol 64:326–332

    Article  CAS  Google Scholar 

  28. Spohn G, Schwarz K, Maurer P, Illges H, Rajasekaran N, Choi Y, Jennings GT, Bachmann MF (2005) Protection against osteoporosis by active immunization with TRANCE/RANKL displayed on virus-like particles. J Immunol 175:6211–6218

    Article  CAS  Google Scholar 

Download references

Funding source

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2018R1D1A1B07047024, 2017R1D1A3B03031764).

Author information

Authors and Affiliations

Authors

Contributions

YK, GL, BK, MP, YJ, and WL performed the experiments. YK and GL reviewed, analyzed, and interpreted the data. YK, GL, and WL wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to W. Lim.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, Y., Lee, G., Kim, B. et al. Modification of the RANKL-RANK-binding site for the immunotherapeutic treatment of osteoporosis. Osteoporos Int 31, 983–993 (2020). https://doi.org/10.1007/s00198-019-05200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-019-05200-6

Keywords

Navigation