Skip to main content

Advertisement

Log in

Dominance rank and the presence of sexually receptive females predict feces-measured body temperature in male chimpanzees

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Quantifying the costs of mating is key for understanding life-history trade-offs. As a reflection of metabolic rate, body temperature is one metric for assaying these costs. However, conventional methods for measuring body temperature are invasive and unsuitable for the study of free-living populations of endangered species, including great apes. A promising proxy for body temperature is fecal temperature, the internal temperature of fecal deposits shortly following defecation. We validated this method with humans, finding that maximum fecal temperature is a reliable proxy for rectal temperature. We then applied this method to wild chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. We collected and analyzed 101 fecal temperature measurements from 43 adult chimpanzees (male: N = 28; female: N = 15). Chimpanzee fecal temperature ranged from 33.4 to 38.9 °C, with a mean of 35.8 °C. Although fecal temperature was not predicted by sex, age, or ambient temperature, male fecal temperature was 1.1 °C higher on days when sexually receptive females were present and was positively correlated with male dominance rank. Post hoc analyses showed that overall copulation rates, but not aggression rates, were positively correlated with fecal temperature, suggesting that sexual physiology and behavior best explain mating-related temperature variation. Together, these results indicate fecal temperature is a reliable proxy for core body temperature in large-bodied mammals, captures metabolic costs associated with male mating behavior, and represents a valuable noninvasive tool for biological field research.

Significance statement

Body temperature illuminates an animal’s physiological condition and energy expenditure, but it is difficult to measure in wild animals. Consequently, basic data on body temperature and its socioecological correlates in wild animals are scant, especially when noninvasive measures must be used. To address this problem, we demonstrated that the temperatures of fecal deposits reliably estimate body temperatures in a large bodied primate and are approximately as reliable as invasive, subcutaneous transponder methods used in other mammals. We then found that fecal temperature in chimpanzees varied by ecologically and reproductively relevant variables including time of year, the presence of sexually receptive females, and dominance rank. Sexual behavior was likely responsible for increased male fecal temperature, as overall copulation frequency, but not aggression, was correlated with fecal temperature. We therefore provide evidence that fecal temperature can be used to assay body temperature and address questions regarding physiological condition and metabolic expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu-Vieira G, Xiao C, Gavrilova O, Reitman ML (2015) Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metab 4:461–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altmann SA (1962) A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Ann N Y Acad Sci 102:338–435

    Article  CAS  PubMed  Google Scholar 

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–266

    Article  CAS  PubMed  Google Scholar 

  • Anestis SF, Bribiescas RG, Hasselschwert DL (2006) Age, rank, and personality effects on the cortisol sedation stress response in young chimpanzees. Physiol Behav 89:287–294

    Article  CAS  PubMed  Google Scholar 

  • Aujard F, Vasseur F (2001) Effect of ambient temperature on the body temperature rhythm of male gray mouse lemurs (Microcebus murinus). Int J Primatol 22:43–56

    Article  Google Scholar 

  • Bakdash JZ, Marusich LR (2017) Repeated measures correlation. Front Psychol 8:456

    Article  PubMed  PubMed Central  Google Scholar 

  • Baracos VE, Whitmore WT, Gale R (1987) The metabolic cost of fever. Can J Physiol Pharmacol 65:1248–1254

    Article  CAS  PubMed  Google Scholar 

  • Barr DJ, Levy R, Scheepers C, Tily HJ (2013) Random effects structure for confirmatory hypothesis testing: keep it maximal. J Mem Lang 68:255–278

    Article  Google Scholar 

  • Bastardot F, Marques-Vidal P, Vollenweider P (2019) Association of body temperature with obesity. The CoLaus study. Int J Obes 43:1026–1033

    Article  Google Scholar 

  • Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Behringer V, Deschner T (2017) Non-invasive monitoring of physiological markers in primates. Horm Behav 91:3–18

    Article  CAS  PubMed  Google Scholar 

  • Benedict FG, Lee RC (1936) Studies on the body temperature of elephants. P Natl Acad Sci USA 22:405–408

    Article  CAS  Google Scholar 

  • Bercovitch FB (1997) Reproductive strategies of rhesus macaques. Primates 38:247–263

    Article  Google Scholar 

  • Berger RJ, Phillips NH (1988) Regulation of energy metabolism and body temperature during sleep and circadian torpor. In: Lydic R, Biebuyck JF (eds) Clinical physiology of sleep. Springer New York, New York, pp 171–189

    Chapter  Google Scholar 

  • Boere V, Silva I, Canale G, Ferreira Pianta T, Tomaz C (2003) Correlation between tympanic and rectal temperature in marmosets (Callithrix penicillata) under acute stress. Braz J Vet Res Anim Sci 40:90–95

    Article  Google Scholar 

  • Brain C, Mitchell D (1999) Body temperature changes in free-ranging baboons (Papio hamadryas ursinus) in the Namib Desert, Namibia. Int J Primatol 20:585–598

    Article  Google Scholar 

  • Busnardo C, Tavares RF, Resstel LBM, Elias LLK, Correa FMA (2010) Paraventricular nucleus modulates autonomic and neuroendocrine responses to acute restraint stress in rats. Auton Neurosci 158:51–57

    Article  CAS  PubMed  Google Scholar 

  • Chelliah K, Sukumar R (2013) The role of tusks, musth and body size in male–male competition among Asian elephants, Elephas maximus. Anim Behav 86:1207–1214

    Article  Google Scholar 

  • Cilulko J, Janiszewski P, Bogdaszewski M, Szczygielska E (2013) Infrared thermal imaging in studies of wild animals. Eur J Wildl Res 59:17–23

    Article  Google Scholar 

  • Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

    Google Scholar 

  • Cowlishaw G, Dunbar RIM (1991) Dominance rank and mating success in male primates. Anim Behav 41:1045–1056

    Article  Google Scholar 

  • de Vries HAN (1998) Finding a dominance order most consistent with a linear hierarchy: a new procedure and review. Anim Behav 55:827-843

  • Dewsbury DA (1982) Dominance rank, copulatory behavior, and differential reproduction. Q Rev Biol 57:135–159

    Article  CAS  PubMed  Google Scholar 

  • Dezecache G, Wilke C, Richi N, Neumann C, Zuberbühler K (2017a) Skin temperature and reproductive condition in wild female chimpanzees. PeerJ 5:e4116

    Article  PubMed  PubMed Central  Google Scholar 

  • Dezecache G, Zuberbühler K, Davila-Ross M, Dahl CD (2017b) Skin temperature changes in wild chimpanzees upon hearing vocalizations of conspecifics. R Soc Open Sci 4:160816

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffy PH, Feuers RJ, Hart RW (1990) Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiol Int 7:291–303

    Article  CAS  PubMed  Google Scholar 

  • Emery Thompson M, Georgiev AV (2014) The high price of success: costs of mating effort in male primates. Int J Primatol 35:609–627

    Article  Google Scholar 

  • Emery Thompson M, Muller MN, Wrangham RW, Lwanga JS, Potts KB (2009) Urinary C-peptide tracks seasonal and individual variation in energy balance in wild chimpanzees. Horm Behav 55:299–305

    Article  CAS  PubMed  Google Scholar 

  • Feldblum JT, Wroblewski EE, Rudicell RS, Hahn BH, Paiva T, Cetinkaya-Rundel M, Pusey AE, Gilby IC (2014) Sexually coercive male chimpanzees sire more offspring. Curr Biol 24:2855–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster MW, Gilby IC, Murray CM, Johnson A, Wroblewski EE, Pusey AE (2009) Alpha male chimpanzee grooming patterns: implications for dominance “style”. Am J Primatol 71:136–144

    Article  CAS  PubMed  Google Scholar 

  • Fowler LA, Hopkins WD, Albers HE, Morris RD, Hyatt CW (1999) Establishing the presence of a body temperature rhythm in chimpanzees (Pan troglodytes) using a tympanic membrane thermometer. Primates 40:499–508

    Article  Google Scholar 

  • Fox H (1923) c. In: Fox H, Penrose CB (eds) Diseases in captive wild mammals and birds. Incidence, description, comparison. Lippincott, Philadelphia, pp 520–525

    Chapter  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Frappier J, Toupin I, Levy JJ, Aubertin-Leheudre M, Karelis AD (2013) Energy expenditure during sexual activity in young healthy couples. PLoS One 8:e79342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller CA, Sulzman FM (1982) Circadian control of body temperature in primates. In: Aschoff J, Daan S, Groos GA (eds) Vertebrate circadian systems: structure and physiology. Springer, Berlin, pp 224–236

    Chapter  Google Scholar 

  • Georgiev AV, Russell AF, Emery Thompson M, Otali E, Muller MN, Wrangham RW (2014) The foraging costs of mating effort in male chimpanzees (Pan troglodytes schweinfurthii). Int J Primatol 35:725–745

    Article  Google Scholar 

  • Georgiev AV, Muehlenbein MP, Prall SP, Emery Thompson M, Maestripieri D (2015) Male quality, dominance rank, and mating success in free-ranging rhesus macaques. Behav Ecol 26:763–772

    Article  Google Scholar 

  • Gestich CC, Caselli CB, Setz EZF (2014) Behavioural thermoregulation in a small neotropical primate. Ethology 120:331–339

    Article  Google Scholar 

  • Glanville EJ, Seebacher F (2010) Advantage to lower body temperatures for a small mammal (Rattus fuscipes) experiencing chronic cold. J Mammal 91:1197–1204

    Article  Google Scholar 

  • Godfrey RW, Collins JR, Gray ML (1998) Evaluation of sexual behavior of hair sheep rams in a tropical environment. J Anim Sci 76:714–717

    Article  CAS  PubMed  Google Scholar 

  • Goodall J (1986) The chimpanzees of Gombe: patterns of behavior. Belknap Press, Cambridge

  • Haftorn S (1972) Hypothermia of tits in the Arctic winter. Ornis Scand 3:153–166

    Article  Google Scholar 

  • Haley MP, Deutsch CJ, Le Boeuf BJ (1994) Size, dominance and copulatory success in male northern elephant seals, Mirounga angustirostris. Anim Behav 48:1249–1260

    Article  Google Scholar 

  • Hämäläinen A, McAdam AG, Dantzer B, Lane JE, Haines JA, Humphries MM, Boutin S (2017) Fitness consequences of peak reproductive effort in a resource pulse system. Sci Rep 7:9335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartter J, Stampone MD, Ryan SJ, Kirner K, Chapman CA, Goldman A (2012) Patterns and perceptions of climate change in a biodiversity conservation hotspot. PLoS One 7:e32408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward JS, Eckerson JD, Collis ML (1977) Thermoregulatory heat production in man: prediction equation based on skin and core temperatures. J Appl Physiol 42:377–384

    Article  CAS  PubMed  Google Scholar 

  • Hettyey A, Crochet P-A, Merilä J, Herczeg G, Laurila A (2009) Body temperature, size, nuptial colouration and mating success in male moor frogs (Rana arvalis). Amphibia-Reptilia 30:37–43

    Article  Google Scholar 

  • Horning M, Haulena M, Tuomi PA et al (2017) Best practice recommendations for the use of fully implanted telemetry devices in pinnipeds. Anim Biotelem 5:13

    Article  Google Scholar 

  • Huang B, Wey TW, Blumstein DT (2011) Correlates and consequences of dominance in a social rodent. Ethology 117:573–585

    Article  Google Scholar 

  • Janssen I, Heymsfield SB, Wang Z, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89:81–88

    Article  CAS  PubMed  Google Scholar 

  • Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6:255–259

    Article  Google Scholar 

  • Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat Rev 55:163–172

    Article  Google Scholar 

  • Jensen SA, Mundry R, Nunn CL, Boesch C, Leendertz FH (2009) Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline. J Wildl Dis 45:542–546

    Article  PubMed  Google Scholar 

  • Johnston R, Jones K, Manley D (2018) Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual Quant 52:1957–1976

    Article  PubMed  Google Scholar 

  • Kiyatkin EA (2010) Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front Biosci 15:73–92

    Article  CAS  PubMed Central  Google Scholar 

  • Köhler M, Marín-Moratalla N, Jordana X, Aanes R (2012) Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487:358–361

    Article  CAS  PubMed  Google Scholar 

  • Körtner G, Geiser F (1995) Body temperature rhythms and activity in reproductive Antechinus (Marsupialia). Physiol Behav 58:31–36

    Article  PubMed  Google Scholar 

  • Kukkonen TM, Binik YM, Amsel R, Carrier S (2007) Thermography as a physiological measure of sexual arousal in both men and women. J Sex Med 4:93–105

    Article  PubMed  Google Scholar 

  • Kusuda S, Wakimoto T, Sato T, Nishimura K, Kawakami S, Okuda K, Saito E, Shimada T, Sakamoto H, Yanagimoto H, Wada S, Nishio K, Fuji H, Suzuki T, Hashikawa H, Kusunoki H, Doi O (2007) Relationship between body temperature and ovarian cycle in Asian and African elephants. J Reprod Dev 53:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Kusuda S, Kakizoe Y, Kanda K, Sengoku T, Fukumoto Y, Adachi I, Watanabe Y, Doi O (2011) Ovarian cycle approach by rectal temperature and fecal progesterone in a female killer whale, Orcinus orca. Zoo Biol 30:285–295

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 1:1–26

  • Lane MA, Baer DJ, Rumpler WV, Weindruch R, Ingram DK, Tilmont EM, Cutler RG, Roth GS (1996) Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. P Natl Acad Sci USA 93:4159–4164

    Article  CAS  Google Scholar 

  • Langer F, Fietz J (2014) Ways to measure body temperature in the field. J Therm Biol 42:46–51

    Article  PubMed  Google Scholar 

  • Lassek WD, Gaulin SJC (2009) Costs and benefits of fat-free muscle mass in men: relationship to mating success, dietary requirements, and native immunity. Evol Hum Behav 30:322–328

    Article  Google Scholar 

  • Launhardt K, Borries C, Hardt C, Epplen JT, Winkler P (2001) Paternity analysis of alternative male reproductive routes among the langurs (Semnopithecus entellus) of Ramnagar. Anim Behav 61:53–64

    Article  PubMed  Google Scholar 

  • Levy O, Dayan T, Kronfeld-Schor N (2011) Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature. Physiol Biochem Zool 84:175–184

    Article  PubMed  Google Scholar 

  • Long CT, Pacharinsak C, Jampachaisri K, McKeon GP, Howard AM, Albertelli MA, Felt SA (2011) Comparison of rectal and tympanic core body temperature measurement in adult Guyanese squirrel monkeys (Saimiri sciureus sciureus). J Med Primatol 40:135–141

    Article  CAS  PubMed  Google Scholar 

  • Lovegrove BG (2009) Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. J Comp Physiol B 179:451–458

    Article  PubMed  Google Scholar 

  • Luke SG (2017) Evaluating significance in linear mixed-effects models in R. Behav Res Methods 49:1494–1502

  • MacCormick HA, MacNulty DR, Bosacker AL, Lehman C, Bailey A, Anthony Collins D, Packer C (2012) Male and female aggression: lessons from sex, rank, age, and injury in olive baboons. Behav Ecol 23:684–691

    Article  Google Scholar 

  • Mackowiak PA, Wasserman SS, Levine MM (1992) A critical appraisal of 98.6°F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA 268:1578–1580

    Article  CAS  PubMed  Google Scholar 

  • Mazerolle SM, Ganio MS, Casa DJ, Vingren J, Klau J (2011) Is oral temperature an accurate measurement of deep body temperature? A systematic review. J Athl Train 46:566–573

    Article  PubMed  PubMed Central  Google Scholar 

  • McCafferty DJ, Gallon S, Nord A (2015) Challenges of measuring body temperatures of free-ranging birds and mammals. Anim Biotelem 3:33

    Article  Google Scholar 

  • McElhinny TL, Smale L, Holekamp KE (1997) Patterns of body temperature, activity, and reproductive behavior in a tropical murid rodent, Arvicanthis niloticus. Physiol Behav 62:91–96

    Article  CAS  PubMed  Google Scholar 

  • McElligott AG, Gammell MP, Harty HC, Paini DR, Murphy DT, Walsh JT, Hayden TJ (2001) Sexual size dimorphism in fallow deer (Dama dama): do larger, heavier males gain greater mating success? Behav Ecol Sociobiol 49:266–272

    Article  Google Scholar 

  • McFarland R, Fuller A, Hetem RS, Mitchell D, Maloney SK, Henzi SP, Barrett L (2015) Social integration confers thermal benefits in a gregarious primate. J Anim Ecol 84:871–878

    Article  PubMed  Google Scholar 

  • Melis S, Schauvliege S, van Bolhuis H, Hoyer M, Gasthuys F (2012) Chemical immobilization of chimpanzees (Pan troglodytes) using a combination of detomidine and ketamine. Vet Anaesth Analg 39:520–528

    Article  CAS  PubMed  Google Scholar 

  • Merla A, Romani GL (2007) Thermal signatures of emotional arousal: a functional infrared imaging study. Conf Proc IEEE Eng Med Biol Soc 2007:247–249

    CAS  Google Scholar 

  • Mitani JC, Gros-Louis J, Richards AF (1996) Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates. Am Nat 147:966–980

    Article  Google Scholar 

  • Mitani JC, Watts DP, Amsler SJ (2010) Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr Biol 20:R507–R508

    Article  CAS  PubMed  Google Scholar 

  • Morrison P (1962) An analysis of body temperature in the chimpanzee. J Mammal 43:166–171

    Article  Google Scholar 

  • Muehlenbein MP, Watts DP (2010) The costs of dominance: testosterone, cortisol and intestinal parasites in wild male chimpanzees. Biopsychosoc Med 4:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller MN (2002) Agonistic relations among Kanyawara chimpanzees. In: Boesch C, Hohmann G, Marchant L (eds) Behavioral diversity in chimpanzees and bonobos. Cambridge University Press, Cambridge, pp 112–124

    Chapter  Google Scholar 

  • Muller MN, Wrangham RW (2004a) Dominance, aggression and testosterone in wild chimpanzees: a test of the ‘challenge hypothesis’. Anim Behav 67:113–123

    Article  Google Scholar 

  • Muller MN, Wrangham RW (2004b) Dominance, cortisol and stress in wild chimpanzees (Pan troglodytes schweinfurthii). Behav Ecol Sociobiol 55:332–340

    Article  Google Scholar 

  • Muller MN, Emery Thompson M, Wrangham RW (2006) Male chimpanzees prefer mating with old females. Curr Biol 16:2234–2238

    Article  CAS  PubMed  Google Scholar 

  • Nadler RD, Bartlett ES (1997) Penile erection: a reflection of sexual arousal and arousability in male chimpanzees. Physiol Behav 61:425–432

    Article  CAS  PubMed  Google Scholar 

  • Obermeyer Z, Samra JK, Mullainathan S (2017) Individual differences in normal body temperature: longitudinal big data analysis of patient records. BMJ 359:j5468

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmes ED, Park CR (1965) The regulation of body temperature during fever. Arch Environ Health 11:749–759

    Article  CAS  PubMed  Google Scholar 

  • Parr LA, Hopkins WD (2000) Brain temperature asymmetries and emotional perception in chimpanzees, Pan troglodytes. Physiol Behav 71:363–371

    Article  CAS  PubMed  Google Scholar 

  • Payne S, Macintosh A, Stock J (2018) Body size and body composition effects on heat loss from the hands during severe cold exposure. Am J Phys Anthropol 166:313–322

    Article  PubMed  Google Scholar 

  • Pruetz JD (2007) Evidence of cave use by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: implications for thermoregulatory behavior. Primates 48:316–319

    Article  CAS  PubMed  Google Scholar 

  • Riek A, Brinkmann L, Gauly M, Perica J, Ruf T, Arnold W, Hambly C, Speakman JR, Gerken M (2017) Seasonal changes in energy expenditure, body temperature and activity patterns in llamas (Lama glama). Sci Rep 7:7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikke BA, Johnson TE (2004) Lower body temperature as a potential mechanism of life extension in homeotherms. Exp Gerontol 39:927–930

    Article  PubMed  Google Scholar 

  • Robinson JL, Seal RF, Spady DW, Joffres MR (1998) Comparison of esophageal, rectal, axillary, bladder, tympanic, and pulmonary artery temperatures in children. J Pediatr 133:553–556

    Article  CAS  PubMed  Google Scholar 

  • Rowland IR, Mallett AK, Wise A (1985) The effect of diet on the mammalian gut flora and its metabolic activities. Crit Rev Toxicol 16:31–103

    Article  CAS  PubMed  Google Scholar 

  • Rowland LA, Bal NC, Periasamy M (2015) The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev 90:1279–1297

    Article  PubMed  Google Scholar 

  • Royston JP (1982) Basal body temperature, ovulation and the risk of conception, with special reference to the lifetimes of sperm and egg. Biometrics 38:397–406

    Article  CAS  PubMed  Google Scholar 

  • RStudio Team (2015) RStudio: integrated development for R. R Studio Inc., Boston

    Google Scholar 

  • Rushmore J, Caillaud D, Matamba L, Stumpf RM, Borgatti SP, Altizer S (2013) Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk. J Anim Ecol 82:976–986

    Article  PubMed  Google Scholar 

  • Sehgal A, Dubey NK, Jyothi MC, Jain S (2002) Comparison of tympanic and rectal temperature in febrile patients. Indian J Pediatr 69:305–308

    Article  PubMed  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Soare A, Cangemi R, Omodei D, Holloszy JO, Fontana L (2011) Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3:374–379

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobolewski ME, Brown JL, Mitani JC (2013) Female parity, male aggression, and the challenge hypothesis in wild chimpanzees. Primates 54:81–88

    Article  PubMed  Google Scholar 

  • Stewart JJ, Brown RD, Rowell JP, Wilson JT (1998) Correlation of continuously recorded rectal and axillary temperatures with tympanic membrane temperature in children. Pediatr Res 43:120 (abstract)

    Article  Google Scholar 

  • Stolwijk AM, Straatman H, Zielhuis GA (1999) Studying seasonality by using sine and cosine functions in regression analysis. J Epidemiol Community Health 53:235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sund-Levander M, Forsberg C, Wahren LK (2002) Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand J Caring Sci 16:122–128

    Article  PubMed  Google Scholar 

  • Surbeck M, Deschner T, Behringer V, Hohmann G (2015) Urinary C-peptide levels in male bonobos (Pan paniscus) are related to party size and rank but not to mate competition. Horm Behav 71:22–30

    Article  CAS  PubMed  Google Scholar 

  • Takemoto H (2004) Seasonal change in terrestriality of chimpanzees in relation to microclimate in the tropical forest. Am J Phys Anthropol 124:81–92

    Article  PubMed  Google Scholar 

  • Telford S, Webb P (1998) The energetic cost of copulation in a polygynandrous millipede. J Exp Biol 201:1847–1849

    PubMed  Google Scholar 

  • Thompson CL, Williams SH, Glander KE, Teaford MF, Vinyard CJ (2014) Body temperature and thermal environment in a generalized arboreal anthropoid, wild mantled howling monkeys (Alouatta palliata). Am J Phys Anthropol 154:1–10

    Article  PubMed  Google Scholar 

  • Thompson CL, Scheidel C, Glander KE, Williams SH, Vinyard CJ (2017) An assessment of skin temperature gradients in a tropical primate using infrared thermography and subcutaneous implants. J Therm Biol 63:49–57

    Article  PubMed  Google Scholar 

  • Torrao NA, Hetem RS, Meyer LCR, Fick LG (2011) Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats. Vet Rec 168:328

    Article  CAS  PubMed  Google Scholar 

  • Trapletti A, Hornik K (2015) Tseries: time series analysis and computational finance. R package version 0.10–34, https://cran.r-project.org/web/packages/tseries/

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Aldine-Atherton, Chicago, pp 1871–1971

    Google Scholar 

  • Ungerfeld R, Fila D (2012) Testicular fluid content and scrotal surface temperature increase with rams’ sexual activity. Reprod Domest Anim 47:e56–e58

    Article  CAS  PubMed  Google Scholar 

  • van Ooijen AMJ, van Marken Lichtenbelt WD, van Steenhoven AA, Westerterp KR (2004) Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol Behav 82:545–553

    Article  CAS  PubMed  Google Scholar 

  • Verbeek NAM (1988) Development of a stable body temperature and growth rates in nestlings of three ground nesting passerines in alpine tundra. J Ornithol 129:449–456

    Article  Google Scholar 

  • Wacker CB, Daniella Rojas A, Geiser F (2012) The use of small subcutaneous transponders for quantifying thermal biology and torpor in small mammals. J Therm Biol 37:250–254

    Article  Google Scholar 

  • Watts DP (2018) Male dominance relationships in an extremely large chimpanzee community at Ngogo, Kibale National Park, Uganda. Behaviour 155:969–1009

    Article  Google Scholar 

  • Wessling EG, Deschner T, Mundry R, Pruetz JD, Wittig RM, Kühl HS (2018a) Seasonal variation in physiology challenges the notion of chimpanzees (Pan troglodytes verus) as a forest-adapted species. Front Ecol Evol 6:60

    Article  Google Scholar 

  • Wessling EG, Kühl HS, Mundry R, Deschner T, Pruetz JD (2018b) The costs of living at the edge: seasonal stress in wild savanna-dwelling chimpanzees. J Hum Evol 121:1–11

    Article  PubMed  Google Scholar 

  • West PM, Packer C (2002) Sexual selection, temperature, and the lion’s mane. Science 297:1339–1343

    Article  CAS  PubMed  Google Scholar 

  • Westerterp-Plantenga MS, van Marken Lichtenbelt WD, Strobbe H, Schrauwen P (2002) Energy metabolism in humans at a lowered ambient temperature. Eur J Clin Nutr 56:288–296

    Article  CAS  PubMed  Google Scholar 

  • Whitehead H (2009) SOCPROG programs: analysing animal social structures. Behav Ecol Sociobiol 63:765–778

    Article  Google Scholar 

  • Wilk MB, Gnanadesikan R (1968) Probability plotting methods for the analysis of data. Biometrika 55:1–17

    CAS  PubMed  Google Scholar 

  • Wilson RP, McMahon CR (2006) Measuring devices on wild animals: what constitutes acceptable practice? Front Ecol Environ 4:147–154

    Article  Google Scholar 

  • Wood BM, Watts DP, Mitani JC, Langergraber KE (2017) Favorable ecological circumstances promote life expectancy in chimpanzees similar to that of human hunter-gatherers. J Hum Evol 105:41–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Wooden KM, Walsberg GE (2002) Effect of environmental temperature on body temperature and metabolic heat production in a heterothermic rodent, Spermophilus tereticaudus. J Exp Biol 205:2099–2105

    PubMed  Google Scholar 

  • Wroblewski EE, Murray CM, Keele BF, Schumacher-Stankey JC, Hahn BH, Pusey AE (2009) Male dominance rank and reproductive success in chimpanzees, Pan troglodytes schweinfurthii. Anim Behav 77:873–885

    Article  PubMed  PubMed Central  Google Scholar 

  • Zihlman AL, Bolter DR (2015) Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution. P Natl Acad Sci USA 112:7466–7471

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Uganda Wildlife Authority, Uganda National Council for Science and Technology, and Makerere University Biological Field Station for permission to work in Kibale National Park. Thanks to David Watts and John Mitani for establishing and maintaining long-term chimpanzee research at Ngogo. We are indebted to Chris Aliganyira, Natasha Bartolotta, Charles Birungi, Rebecca Davenport, Brian Kamugyisha, Godfrey Mbabazi, Lawrence Ndangizi, Alfred Tumusiime, Ambrose Twineomujuni, and David Watts for help with data collection. For logistical and/or analytical support, we thank Sam Angedakin, Charles Businge, Cheryl Knott, Roger Mundry, Rachna Reddy, and Carol Rowney. We also thank two anonymous reviewers and David Watts for constructive comments on the manuscript.

Funding

JDN was supported by the National Science Foundation (Award no. 1613393), National Geographic Society (Award no. 9824-15), Nacey Maggioncalda Foundation, and Boston University. AAS was supported by the National Science Foundation (Award no. 1540259), University of Michigan, and Arizona State University. KEL was supported by the National Institutes of Health Award 5R01AG049395 through the National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob D. Negrey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the use of animals were followed. Noninvasive data collection from chimpanzees received a review exemption from Boston University’s Institutional Animal Care and Use Committee. Similarly, this study did not require approval from Boston University’s Institutional Review Board.

Informed consent

Although this study was not considered human subjects research by Boston University’s Institutional Review Board, human participants provided written consent.

Additional information

Communicated by D. P. Watts

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negrey, J.D., Sandel, A.A. & Langergraber, K.E. Dominance rank and the presence of sexually receptive females predict feces-measured body temperature in male chimpanzees. Behav Ecol Sociobiol 74, 5 (2020). https://doi.org/10.1007/s00265-019-2788-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-019-2788-3

Keywords

Navigation