Skip to main content

Advertisement

Log in

Nanomaterials: new weapons in a crusade against phytopathogens

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria, fungi, viruses, and nematodes are the major causal agents of plant diseases. These phytopathogens are responsible for about 10–40% losses in productivity and quality of food crops and horticultural produce. Although eradication of pathogens is not possible, control of plant diseases has been an area of continuous improvement/research. Use of antimicrobials, bacteriophages, and biocontrol agents, natural and synthetic agrochemicals along with best farm management practices constitute integrated measures for disease control. However, the quest for new materials continues due to pesticide resistance in the pathogens, emergence of new serotypes, and accumulation of high quantities of agrochemical contaminants in the ecosystem and associated environmental hazards, specificity of biocontrol agents, succession of pathogens during the plant growth phase, etc. The emergence of “nanotechnology,” a multidisciplinary field of research, has provided a plethora of nanomaterials for potential applications in the agricultural sector. Control of plant diseases requires agents that reduce the pathogen to manageable levels, tools for early-stage detection of pathogen, and compounds that elicit immune response in the host plants. Nanomaterials have in fact been assessed for their utility in all these approaches for disease control. The present review discusses nanomaterials for controlling phytopathogens, nanomaterials in plant disease diagnostics, and nanomaterials as elicitors of the plant immune system. These nanomaterials thus represent new weapons in the fight against the phytopathogens. Recent studies indicate that nanomaterials will be a crucial component in the agroecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelmalek GAM, Salaheldin TA (2016) Silver nanoparticles as a potent fungicide for citrus phytopathogenic fungi. J Nanomed Res 3:00065

    Google Scholar 

  • Abdel-Razik AB, Hammad IA, Tawfik E (2017) Transformation of thionin genes using chitosan nanoparticle into potato plant to be resistant to fungal infection. IOSR J Biotechnol Biochem 3:01–13

    Google Scholar 

  • Abdulkhair WM, Alghuthaymi MA (2016) Plant pathogens. In: Rigobelo EC (ed) . Plant growth, IntechOpen. https://doi.org/10.5772/65325 Available from: https://www.intechopen.com/books/plant-growth/plant-pathogens

    Google Scholar 

  • Abdullah AS, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A (2017) Host–multi-pathogen warfare: pathogen interactions in co-infected plants. Front Plant Sci 8:1806

    PubMed  PubMed Central  Google Scholar 

  • Achari GA, Kowshik M (2018) Recent developments on nanotechnology in agriculture: plant mineral nutrition, health, and interactions with soil microflora. J Agric Food Chem 66:8647–8661

    CAS  PubMed  Google Scholar 

  • Acimovic SG, Zeng Q, McGhee GC, Sundin GW, Wise JC (2015) Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00016

  • Adisa IO, Pullagurala VL, Peralta-Videa JR, Dimkpa CO, Elmer WH, Gardea-Torresdey J, White J (2019) Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci Nano. https://doi.org/10.1039/C9EN00265K

    CAS  Google Scholar 

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 100:5–28

    CAS  PubMed  Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Aguilar-Méndez MA, San Martín-Martínez E, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532

    Google Scholar 

  • Aleksandrowicz-Trzcińska M, Szaniawski A, Olchowik J, Drozdowski S (2018) Effects of copper and silver nanoparticles on growth of selected species of pathogenic and wood-decay fungi in vitro. For Chron 94:109–116

    Google Scholar 

  • Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids proteins and other biological molecules. Anal Bioanal Chem 391:1609–1618

    CAS  PubMed  Google Scholar 

  • Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS (2015a) Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology 105:1183–1190

    CAS  PubMed  Google Scholar 

  • Ali SM, Yousef NM, Nafady NA (2015b) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater. https://doi.org/10.1155/2015/218904

    CAS  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    CAS  Google Scholar 

  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P, Gottardo S, Marvin HJ, Mech A, Pesudo LQ, Rauscher H (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–476

    PubMed  Google Scholar 

  • Areas MS, Goncalves RM, Soman JM, Souza Filho RC, Gioria R, Junior S, Maringoni AC (2017) Resistance of Xanthomonas euvesicatoria strains from Brazilian pepper to copper and zinc sulfates. An Acad Bras Cienc 90:2375–2380

    PubMed  Google Scholar 

  • Ariffin SA, Adam T, Hashim U, Faridah Sfaridah S, Zamri I, Uda MNA (2014) Plant diseases detection using nanowire as biosensor transducer. Adv Mater Res 832:113–117

    Google Scholar 

  • Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165

    CAS  PubMed  Google Scholar 

  • Ashoori RC (1996) Electrons in artificial atoms. Nature 379:413–419

    CAS  Google Scholar 

  • Azeredo HM, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crop Prod 97:664–671

    CAS  Google Scholar 

  • Bae SW, Tan W, Hong JI (2012) Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun 48:2270–2282

    CAS  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    CAS  PubMed  Google Scholar 

  • Bakthavathsalam P, Rajendran VK, Mohammed JAB (2012) A direct detection of Escherichia coli genomic DNA using gold nanoprobes. J Nanobiotechnol 10:8

    CAS  Google Scholar 

  • Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvan PT (2016) Phytogenic synthesis of silver nanoparticles optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 192:52–64

    CAS  PubMed  Google Scholar 

  • Banik S, Luque AP (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Span J Agric Res 15:23

    Google Scholar 

  • Baptista PV, Koziol-Montewka M, Paluch-Oles J, Doria G, Franco R (2006) Gold-nanoparticle-probe–based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem 52:1433–1434

    CAS  PubMed  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204

    CAS  Google Scholar 

  • Bergeson LL (2010) Nanosilver pesticide products: what does the future hold? Environ Qual Manag 19:73–82

    Google Scholar 

  • Bhargava P, Kumar A, Kumar S, Azad CS (2018) Impact of fungicides and nanoparticles on Ustilaginoidea virens causing false smut disease of rice. J Pharmacogn Phytochem 7:1541–1544

    CAS  Google Scholar 

  • Bholay AD, Nalawade PM, Borkhataria BV (2013) Fungicidal potential of biosynthesized silver nanoparticles against phyto-pathogens and potentiation of fluconazole. World J Pharm Res 1:12–15

    Google Scholar 

  • Boch J, Bonas U (2001) Gram-negative plant pathogenic bacteria. In: Muhldorfer I, Schafer KP (eds) Emerging bacterial pathogens. Contrib Microbiol. Karger, Basel, pp 186–196

    Google Scholar 

  • Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA (2013) Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT Food Sci Technol 50:702–706

    CAS  Google Scholar 

  • Boonsongrit Y, Mitrevej A, Mueller BW (2006) Chitosan drug binding by ionic interaction. Eur J Pharm Biopharm 62:267–274

    CAS  PubMed  Google Scholar 

  • Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    CAS  PubMed  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27:085103

    PubMed  Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14:229–235

    CAS  Google Scholar 

  • Brandl MT, Haxo AF, Bates AH, Mandrell RE (2004) Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants. Appl Environ Microbiol 70:1182–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brecht M, Datnoff L, Nagata R, Kucharek T (2003) The role of silicon in suppressing tray leaf spot development in St. Augustine grass. Publication in Univ. of Florida, p 1-4

  • Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Chakraborty N, Panda K, Acharya K (2017) Chitosan-induced immunity in Camellia sinensis (L.) O, Kuntze against blister blight disease is mediated by nitric-oxide. Plant Physiol Biochem 115:298–307

    CAS  PubMed  Google Scholar 

  • Chao SHL, Choi HS (2005) Method for providing enhanced photosynthesis. Korea Research Institute of Chemical Technology, Jeonju, South Korea Bull 11:1–34

  • Chartuprayoon N, Rheem Y, Ng JC, Nam J, Chen W, Myung NV (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5:3497–3502

    CAS  Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    CAS  PubMed  Google Scholar 

  • Chen J, Wang X, Han H (2013) A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. J Nanopart Res 15:1658

    Google Scholar 

  • Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889

    CAS  PubMed  Google Scholar 

  • Chen J, Mao S, Xu Z, Ding W (2019) Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv 9:3788–3799

    CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    CAS  Google Scholar 

  • Chikte RG, Paknikar KM, Rajwade JM, Sharma J (2019) Nanomaterials for the control of bacterial blight disease in pomegranate: quo vadis? Appl Microbiol Biotechnol 103:4605–4621

    CAS  PubMed  Google Scholar 

  • Chorianopoulos NG, Tsoukleris DS, Panagou EZ, Falaras P, Nychas GJ (2011) Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol 28:164–170

    CAS  PubMed  Google Scholar 

  • Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep. https://doi.org/10.1038/s41598-017-08571-0

  • Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M, Subhramanyam BS, Devakumar C, Goswami A (2010) Nanosulfur: a potent fungicide against food pathogen, Aspergillus niger. AIP Conf Proc 1276:154–157

    CAS  Google Scholar 

  • Chuang HW, Chang PY, Syu YY (2014) Harpin protein an elicitor of disease resistance acts as a growth promoter in Phalaenopsis orchids. J Plant Growth Regul 33:788–797

    CAS  Google Scholar 

  • Collmer A, Schneider DJ, Lindeberg M (2009) Lifestyles of the effector rich: genome-enabled characterization of bacterial plant pathogens. Plant Physiol 150:1623–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49

    CAS  PubMed  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46:261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dapkekar A, Deshpande P, Oak MD, Paknikar KM, Rajwade JM (2018) Zinc use efficiency is enhanced in wheat through nanofertilization. Sci Rep 8:6832

    PubMed  PubMed Central  Google Scholar 

  • Dar J, Soytong K (2013) In-vitro testing of nanomaterials containing globosum ethyl acetate extract against Fusarium oxysporum f, sp, lycopersici (race 2).”, ICIST 2013 KMITL Bangkok Thailand November 28-29 2013, 5 p

  • David CA, Galceran J, Rey-Castro C, Puy J, Companys E, Salvador J, Monné J, Wallace R, Vakourov A (2012) Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES. J Phys Chem C 116:11758–11767

    CAS  Google Scholar 

  • De Filpo G, Palermo AM, Rachiele F, Nicoletta FP (2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeterior Biodegradation 85:217–222

    Google Scholar 

  • De la Escosura-Muniz A, Merkoci A (2012) Nanochannels preparation and application in biosensing. ACS Nano 6:7556–7583

    PubMed  Google Scholar 

  • De la Rosa-García D, Susana C, Martínez-Torres P, Gómez-Cornelio S, Corral-Aguado MA, Quintana P, Gómez-Ortíz NM (2018) Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical Fruit. J Nanomater. https://doi.org/10.1155/2018/3498527

    Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer India, New Delhi, pp 59–81. https://doi.org/10.1007/978-81-322-1689-6

    Book  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    PubMed  PubMed Central  Google Scholar 

  • Del Campo R, Russi P, Mara P, Mara H, Peyrou M, De León IP, Gaggero C (2009) Xanthomonas axonopodis pv. citri enters the VBNC state after copper treatment and retains its virulence. FEMS Microbiol Lett 298:143–148

    PubMed  Google Scholar 

  • Derbalah AS, Elkot GAE, Hamza AM (2012) Laboratory evaluation of botanical extracts microbial culture filtrates and silver nanoparticles against Botrytis cinerea. Ann Microbiol 62:1331–1337

    Google Scholar 

  • Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017) Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401

    CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26:913–924

    CAS  PubMed  Google Scholar 

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284.9

    CAS  Google Scholar 

  • Djurisic AB, Chen XY, Leung YH (2012) Recent progress in hydrothermal synthesis of zinc oxide nanomaterials. Recent Pat Nanotechnol 6:124–134

    CAS  PubMed  Google Scholar 

  • Doddaraju P, Kumar P, Gunnaiah R, Gowda AA, Lokesh V, Pujer P, Manjunatha G (2019) Reliable and early diagnosis of bacterial blight in pomegranate caused by Xanthomonas axonopodis pv. punicae using sensitive PCR techniques. Sci Rep 9:10097

    PubMed  PubMed Central  Google Scholar 

  • Doehlemann G, Ökmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. Microbiol Spectrum 5:FUNK-0023-2016

    Google Scholar 

  • Dreier J, Bermpohl A, Eichenlaub R (1995) Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Phytopathology 85:462–468

    CAS  Google Scholar 

  • Dresselhaus MS, Lin MY, Rabin O, Black MR, Dresselhaus G (n.d.) Nanowires. Available at http://mgm.mit.edu/. Accessed 21 November 2019

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Google Scholar 

  • Eichenlaub R, Gartemann KH, Burger A (2007) Clavibacter michiganensis, a group of Gram-positive phytopathogenic bacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Netherlands, pp 385–421

    Google Scholar 

  • Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28:28

    Google Scholar 

  • Elgorban AM, Aref SM, Seham SM, Elhindi KM, Bahkali AH, Sayed SR, Manal MA (2016) Extracellular synthesis of silver nanoparticles using Aspergillus versicolor and evaluation of their activity on plant pathogenic fungi. Mycosphere 7:844–852

    Google Scholar 

  • Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079

    CAS  Google Scholar 

  • Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133

    CAS  PubMed  Google Scholar 

  • Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C, Gardea-Torresdey J, White JC (2018) Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Dis 102:1394–1401

    CAS  PubMed  Google Scholar 

  • El-Wakil NA, Hassan EA, Abou-Zeid RE, Dufresne A (2015) Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr Polym 124:337–346

    CAS  PubMed  Google Scholar 

  • Espitia PJP, Soares NDFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    CAS  Google Scholar 

  • Fang Y, Ramasamy R (2015) Current and prospective methods for plant disease detection. Biosensors 5(537-561):9

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol. https://doi.org/10.1155/2012/326452

    Google Scholar 

  • Francl LJ (2001) The disease triangle: a plant pathological paradigm revisited. lant Health Instruct. https://doi.org/10.1094/PHI-T-2001-0517-01

  • Frasco M, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9:7266–7286

    CAS  PubMed  Google Scholar 

  • Frazer L (2001) Titanium dioxide: environmental white knight. Environ Health Perspect 109:174–177

    Google Scholar 

  • Fu L, Wang Z, Dhankher OP, Xing B (2019) Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J Exp Bot. https://doi.org/10.1093/jxb/erz314

    Google Scholar 

  • Galán JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438

    PubMed  PubMed Central  Google Scholar 

  • Gan N, Yang X, Xie D, Wu Y, Wen W (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 10:625–638

    CAS  PubMed  Google Scholar 

  • Gautam N, Salaria N, Thakur K, Kukreja S, Yadav N, Yadav R, Goutam U (2019) Green silver nanoparticles for phytopathogen control. Proc Natl Acad Sci India B Biol Sci. https://doi.org/10.1007/s40011-019-01115-8

  • Ghanbarzadeh B, Oleyaei SA, Almasi H (2015) Nanostructured materials utilized in biopolymer-based plastics for food packaging applications. Crit Rev Food Sci Nutr 55:1699–1723

    CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    CAS  PubMed  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    CAS  Google Scholar 

  • Gilbert GS, Parker IM (2016) The evolutionary ecology of plant disease: a phylogenetic perspective. Annu Rev Phytopathol 54:549–578

    CAS  PubMed  Google Scholar 

  • Glawe DA (1992) Thomas J. Burrill, pioneer in plant pathology. Annu Rev Phytopathol 30:17–25

    CAS  PubMed  Google Scholar 

  • Gochez AM, Huguet-Tapia JC, Minsavage GV, Shantaraj D, Jalan N, Strauß A, Lahaye T, Wang N, Canteros BI, Jones JB, Potnis N (2018) Pacbio sequencing of copper-tolerant Xanthomonas citri reveals presence of a chimeric plasmid structure and provides insights into reassortment and shuffling of transcription activator-like effectors among X. citri strains. BMC Genomics. https://doi.org/10.1186/s12864-017-4408-9

  • Gogoi R, Singh PK, Kumar R, Nair KK, Alam I, Srivastava C, Yadav S, Gopal M, Choudhury SR, Goswami A (2013) Suitability of nano-sulphur for biorational management of powdery mildew of okra (Abelmoschus esculentus Moench) caused by Erysiphe cichoracearum. J Plant Pathol Microbiol 4:171–175

    Google Scholar 

  • Gomez JL, Tigli O (2013) Zinc oxide nanostructures: from growth to application. J Mater Sci 48:612–624

    CAS  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectrosc 106:170–174

    CAS  PubMed  Google Scholar 

  • Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A Physicochem Eng Asp 374:1–8

    CAS  Google Scholar 

  • Graham JH, Johnson EG, Myers ME, Young M, Rajasekaran P, Das S, Santra S (2016) Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis 100:2442–2447

    CAS  PubMed  Google Scholar 

  • Grillo R, dos Santos NZP, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly (ɛ-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 23:1–9

    Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-imidacloprid. Pestic Biochem Physiol 92:83–91

    CAS  Google Scholar 

  • Gumiero M, Peressini D, Pizzariello A, Sensidoni A, Iacumin L, Comi G, Toniolo R (2013) Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chem 138:1633–1640

    CAS  PubMed  Google Scholar 

  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48:415–427

    PubMed  PubMed Central  Google Scholar 

  • Hafez EE, Hassan HS, Elkady M, Salama E (2014) Assessment of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int J Sci Technol Res 3:318–324

    Google Scholar 

  • Hails RS (2000) Genetically modified plants—the debate continues. Trends Ecol Evol 15:14–18

    CAS  PubMed  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    CAS  PubMed  Google Scholar 

  • Hao Y, Cao X, Ma C, Zhang Z, Zhao N, Ali A, Hou T, Xiang Z, Zhuang J, Wu S, Xing B (2017) Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci 8:1332

    PubMed  PubMed Central  Google Scholar 

  • Hassan SED, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El-Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24:377–393

    CAS  PubMed  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    CAS  PubMed  Google Scholar 

  • Heaton J, Jones CK (2008) Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. J Appl Microbiol 104:613–626

    CAS  PubMed  Google Scholar 

  • Hogenhout SA, Loria R (2008) Virulence mechanisms of Gram-positive plant pathogenic bacteria. Curr Opin Plant Biol 11:449–456

    CAS  PubMed  Google Scholar 

  • Holubnycha V, Pogorielov M, Kalinkevych O, Ivashchenko O, Peplinska B, Jarek M (2017) Antibacterial activity of the new copper nanoparticles and Cu NPs/chitosan solution. IEEE 7th International Conference on Nanomaterials: Applications and Properties (NAP) 04NB10-1

  • Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62

    CAS  PubMed  Google Scholar 

  • Hussain T (2017) Nanotechnology: diagnosis of plant diseases. Agric Res Tech Open Access J. https://doi.org/10.19080/ARTOAJ.2017.10.555777

  • Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Sci Technol Adv Mater 6:956–962

    Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    CAS  Google Scholar 

  • Ion AC, Ion I, Culetu A (2010) Carbon-based nanomaterials: environmental applications. Univ Politehn Bucharest 38:129–132

    Google Scholar 

  • Jagana D, Hegde YR, Lella R (2017) Green nanoparticles: a novel approach for the management of banana anthracnose caused by Colletotrichum musae. Int J Curr Microbiol App Sci 6:1749–1756

    Google Scholar 

  • Jin T, He Y (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 13:6877–6885

    CAS  Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. J Food Sci 74:M46–M52

    CAS  PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    CAS  PubMed  Google Scholar 

  • Johnson GF (1935) The early history of copper fungicides. Agric Hist 9:67–79

    Google Scholar 

  • Jothirethinam A, Prathiba S, Shanthi N, Arunkumar K (2015) Green synthesized silver nanoparticles prepared from the antimicrobial crude extracts of two brown seaweeds against plant pathogens. Am J Nanotechnol 6:31

    Google Scholar 

  • Jung JH, Kim SW, Min JS, Kim YJ, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38:39–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaman PK, Dutta P (2017) In vitro evaluation of biosynthesized silver nanoparticles (Ag NPs) against soil borne plant pathogens. Int J Nanotechnol Appl 11:261–264

    Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    CAS  Google Scholar 

  • Kannan V, Bastas K, Devi R (2015) Scientific and economic impact of plant pathogenic bacteria. In: Kannan RV, Bastas KK (eds) Sustainable approaches to controlling plant pathogenic bacteria. CRC Press, Boca Raton, pp 369–392. https://doi.org/10.1201/b18892-21

    Chapter  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13

    CAS  Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    CAS  PubMed  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    CAS  Google Scholar 

  • Khater M, de la Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86

    CAS  PubMed  Google Scholar 

  • Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathol 123:505–526

    CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785

    PubMed  PubMed Central  Google Scholar 

  • Kim H, Kang H, Chu G, Byun G (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18

    CAS  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98:849–864

    CAS  PubMed  Google Scholar 

  • Knell M (2010) Nanotechnology and the sixth technological revolution. In: Cozzens SE, Wetmore JM (eds) Nanotechnology and the challenges of equity, equality and development. Springer, Dordrecht, pp 127–143

    Google Scholar 

  • Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7:2833–2881

    PubMed  PubMed Central  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99

    CAS  PubMed  Google Scholar 

  • Krutyakov YA, Kudrinskiy AA, Zherebin PM, Yapryntsev AD, Pobedinskaya MA, Elansky SN, Denisov AN, Mikhaylov DM, Lisichkin GV (2016) Tallow amphopolycarboxyglycinate-stabilized silver nanoparticles: new frontiers in development of plant protection products with a broad spectrum of action against phytopathogens. Mater Res Express. https://doi.org/10.1088/2053-1591/3/7/075403

    Google Scholar 

  • Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015) Development and evaluation of alginate–chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81:631–637

    CAS  PubMed  Google Scholar 

  • Kumar A, Chahal TS, Hunjan MS, Kaur H, Srivastava A (2018) Studies on Xanthomonas axonopodis pv. punicae, causing bacterial blight of pomegranate in Punjab. Int J Agric Environ Biotechnol 11:537–542

    Google Scholar 

  • Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153

    CAS  PubMed  Google Scholar 

  • Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron Sustain Dev 38:1–18

    CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011a) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011b) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Sang H, Guo H, Popko JT, He L, White JC, Dhankher OP, Jung G, Xing B (2017) Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology. https://doi.org/10.1088/1361-6528/aa61f3

    PubMed  Google Scholar 

  • Li HX, Nuckols TA, Harris D, Stevenson KL, Brewer MT (2019) Differences in fungicide resistance profiles and multiple resistance to a quinone-outside inhibitor (QoI), two succinate dehydrogenase inhibitors (SDHI), and a demethylation inhibitor (DMI) for two Stagonosporopsis species causing gummy stem blight of cucurbits. Pest Manag Sci 75:3093–3101

    CAS  PubMed  Google Scholar 

  • Liang Y, Yang D, Cui J (2017) A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management. New J Chem 41:13692–13699

    CAS  Google Scholar 

  • Liao YY, Strayer-Scherer AL, White J, Mukherjee A, De La Torre-Roche R, Ritchie L, Colee J, Vallad GE, Freeman JH, Jones JB, Paret ML (2019) Nano-magnesium oxide: a novel bactericide against copper-tolerant Xanthomonas perforans causing tomato bacterial spot. Phytopathology 109:52–62

    PubMed  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    CAS  Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227

    CAS  PubMed  Google Scholar 

  • Liu F, Avena-Bustillos RJ, Chiou BS, Li Y, Ma Y, Williams TG, Wood DF, McHugh TH, Zhong F (2017) Controlled-release of tea polyphenol from gelatin films incorporated with different ratios of free/nanoencapsulated tea polyphenols into fatty food simulants. Food Hydrocoll 62:212–221

    CAS  Google Scholar 

  • Maheshwari Y, Vijayanandraj S, Jain RK, Mandal B (2018) Field-usable lateral flow immunoassay for the rapid detection of a macluravirus, large cardamom chirke virus. J Virol Methods 253:43–48

    CAS  PubMed  Google Scholar 

  • Majeed ZH, Taha MR (2013) A review of stabilization of soils by using nanomaterials. Aust J Basic Appl Sci 7:576–581

    CAS  Google Scholar 

  • Makarovsky D, Fadeev L, Salam BB, Zelinger E, Matan O, Inbar J, Jurkevitch E, Gozin M, Burdman S (2018) Silver nanoparticles complexed with bovine submaxillary mucin possess strong antibacterial activity and protect against seedling infection. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02212-17

  • Mala R, Arunachalam P, Sivsankari M (2012) Synergistic bactericidal activity of silver nanoparticles and ciprofloxacin against phytopathogens. J Cell Tissue Res 12:3249–3254

    CAS  Google Scholar 

  • Mamonova IA, Babushkina IV, Norkin IA, Gladkova EV, Matasov MD, Puchinyan DM (2015) Biological activity of metal nanoparticles and their oxides and their effect on bacterial cells. Nanotechnol Russ 10:128–134

    CAS  Google Scholar 

  • Maneerat C, Hayata Y (2006) Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int J Food Microbiol 107:99–103

    CAS  PubMed  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25

    Google Scholar 

  • Martins PMM, Merfa MV, Takita MA, De Souza AA (2018) Persistence in phytopathogenic bacteria: do we know enough? Front Microbiol 9:1099

    PubMed  PubMed Central  Google Scholar 

  • Mattos BD, Magalhaes WL (2016) Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. J Nanopart Res 18:274

    Google Scholar 

  • Mazzaglia A, Fortunati E, Kenny JM, Torre L, Balestra GM (2017) In: Axelos MAV, Van de Voorde M (eds) Nanomaterials in plant protection. Nanotechnology in Agriculture and Food Science. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp 115–134

    Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59:129–142

    CAS  PubMed  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465

    CAS  PubMed  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    PubMed  Google Scholar 

  • McNally B, Singer A, Yu Z, Sun Y, Weng Z, Meller A (2010) Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 10:2237–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mélinon P, Begin-Colin S, Duvail JL, Gauffre F, Boime NH, Ledoux G, Plain J, Reiss P, Silly F, Warot-Fonrose B (2014) Engineered inorganic core/shell nanoparticles. Phys Rep 543:163–197

    Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes JE, Abrunhosa L, Teixeira JD, de Camargo ER, de Souza CP, Pessoa JDC (2014) Antifungal activity of silver colloidal nanoparticles against phytopathogenic fungus (Phomopsis sp.) in soybean seeds. Int J Biol Vet Agric Food Eng 8:928–933

    Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung MY, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    CAS  Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107

    CAS  PubMed  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One. https://doi.org/10.1371/journal.pone.0097881

    PubMed  PubMed Central  Google Scholar 

  • Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185:1–22

    Google Scholar 

  • Mohmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal—a review. Environ Sci Pollut Res 20:1239–1260

    CAS  Google Scholar 

  • Mondal KK, Mani C (2009) Suppression of common bacterial blight in mungbean by phylloplane resident Pseudomonas fluorescens strain MBPF-01 alone and in combination with nanocopper. Indian Phytopathol 62:445–448

    Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893

    CAS  Google Scholar 

  • Mondal KK, Bhar LM, Mani C (2010) Combined efficacy of Pseudomonas fluorescens strain MBPF-01 and nanocopper against bacterial leaf blight in rice. Indian Phytopathol 63:266–268

    Google Scholar 

  • Mondal K, Rajendran TP, Chigurupati P, Mani C, Sharma J, Sharma R, Pooja Verma G, Kumar R, Singh D, Kumar A, Saxena AK, Jain R (2012) The reliable and rapid polymerase chain reaction (PCR) diagnosis for Xanthomonas axonopodis pv. punicae in pomegranate. Afr J Microbiol Res 6:5950–5956

    CAS  Google Scholar 

  • Moussa SH, Tayel AA, Alsohim AS, Abdallah RR (2013) Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78:M1589–M1594

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 2014:63–71

    Google Scholar 

  • Nadendla SR, Rani TS, Vaikuntapu PR, Maddu RR, Podile AR (2018) HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr Polym 199:11–19

    CAS  PubMed  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58:1423–1430

    CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    CAS  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7:2612

    PubMed  PubMed Central  Google Scholar 

  • Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140:185–192

    CAS  Google Scholar 

  • Nassar AM (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5:14–19

    Google Scholar 

  • Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 3:1033–1041

    Google Scholar 

  • Nguyen HC, Nguyen TT, Dao TH, Ngo QB, Pham HL, Nguyen TBN (2016) Preparation of Ag/SiO2 nanocomposite and assessment of its antifungal effect on soybean plant (a Vietnamese species DT-26). Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/7/4/045014

    Google Scholar 

  • Nizan R, Barash I, Valinsky L, Lichter A, Manulis S (1997) The presence of hrp genes on the pathogenicity associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. Mol Plant-Microbe Interact 10:677–682

    CAS  PubMed  Google Scholar 

  • Norman DJ, Chen J (2011) Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 46:426–428

    CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    CAS  PubMed  Google Scholar 

  • Ogundele DT, Adio AA, Oludele OE (2015) Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. J Environ Anal Toxicol 5:1–5

    Google Scholar 

  • Oh JW, Chun S, Chandrasekaran M (2019) Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy 9:21

    CAS  Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. EJEAF chem 7:2942–2947

    CAS  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    CAS  Google Scholar 

  • Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papaiah S, Seshadri Goud TE, Prasad D, Narasimha G, Vemana K (2014) Silver nanoparticles a potential alternative to conventional anti-fungal agents to fungal pathogens affecting crop plants. Int J Nano Dimens 5:139–144

    Google Scholar 

  • Paret ML, Palmateer AJ, Knox GW (2013a) Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. HortScience 48:189–192

    CAS  Google Scholar 

  • Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013b) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103:228–236

    CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Google Scholar 

  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J. https://doi.org/10.1155/2014/829894

    Google Scholar 

  • Perfileva AI, Tsivileva OM, Koftin OV, Anis’kov AA, Ibragimova DN (2018) Selenium-containing nanobiocomposites of fungal origin reduce the viability and biofilm formation of the bacterial phytopathogen Clavibacter michiganensis subsp, sepedonicus. Nanotechnol Russ 13:268–276

    CAS  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109:12302–12308

    CAS  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    PubMed  PubMed Central  Google Scholar 

  • Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173:51–57

    CAS  Google Scholar 

  • Qiu L, Yang H, Wang L, Fan S, Gao J (2014) Study on the antibacterial effect of silver nanoparticles on the plant pathogenic fungus Exserohilum turcicum Pass. Appl Mech Mater 713-715:2893–2899

    Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of candidatus phytoplasma aurantifolia with a quantum dots FRET-based biosensor. J Plant Pathol 94:525–534

    Google Scholar 

  • Ragaei M, Sabry AKH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545

    Google Scholar 

  • Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L, and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc 112:384–387

    CAS  PubMed  Google Scholar 

  • Rana S, Kalaichelvan PT (2013) Ecotoxicity of nanoparticles. ISRN Toxicol 2013:574648

    PubMed  PubMed Central  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478

    CAS  Google Scholar 

  • Richard D, Boyer C, Vernière C, Canteros BI, Lefeuvre P, Pruvost O (2017a) Complete genome sequences of six copper-resistant Xanthomonas citri pv. citri strains causing Asiatic citrus canker, obtained using long-read technology. Genome Announc 5:e00010–e00017

    PubMed  PubMed Central  Google Scholar 

  • Richard D, Tribot N, Boyer C, Terville M, Boyer K, Javegny S, Roux-Cuvelier M, Pruvost O, Moreau A, Chabirand A, Vernière C (2017b) First report of copper-resistant Xanthomonas citri pv. citri pathotype a causing Asiatic citrus canker in Réunion, France. Plant Dis. https://doi.org/10.1094/PDIS-09-16-1387-PDN

    Google Scholar 

  • Rodrigues S, Dionísio M, Lopez CR, Grenha A (2012) Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater 3:615–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Moreno L, Ebert MK, Bolton MD, Thomma Bart PHJ (2018) Tools of the crook-infection strategies of fungal plant pathogens. Plant J 93:664–674

    CAS  PubMed  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    CAS  PubMed  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515

    Google Scholar 

  • Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64:6148–6155

    CAS  PubMed  Google Scholar 

  • Sanzari I, Leone A, Ambrosone A (2019) Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00120

  • Sarkar S, Datta SC, Biswas DR (2014) Synthesis and characterization of nanoclay–polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. J Appl Polym Sci 131:1–8

    Google Scholar 

  • Sathiyabama M, Manikandan A (2016) Chitosan nanoparticle induced defense responses in fingermillet plants against blast disease caused by Pyricularia grisea (Cke.) Sacc. Carbohydr Polym 154:241–246

    CAS  PubMed  Google Scholar 

  • Sathiyabama M, Parthasarathy R (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325

    CAS  PubMed  Google Scholar 

  • Satyvaldiev AS, Zhasnakunov ZK, Omurzak E, Doolotkeldieva TD, Bobusheva ST, Orozmatova GT, Kelgenbaeva Z (2018) Copper nanoparticles: synthesis and biological activity. IOP Conf Ser Mater Sci Eng 302:012075

    Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537

    Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO,MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182

    CAS  PubMed  Google Scholar 

  • Sawangphruk M, Srimuk P, Chiochan P, Sangsri T, Siwayaprahm P (2012) Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon 50:5156–5161

    CAS  Google Scholar 

  • Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:1–21

    CAS  Google Scholar 

  • Shanmugam C, Gunasekaran D, Duraisamy N, Nagappan R, Krishnan K (2015) Bioactive bile salt-capped silver nanoparticles activity against destructive plant pathogenic fungi through in vitro system. RSC Adv 5:71174–71182

    Google Scholar 

  • Sharma C, Dhiman R, Rokana N, Panwar H (2017) Nanotechnology: an untapped resource for food packaging. Front Microbial 8:1–22

    Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Sherald JL, Lei JD (1991) Evaluation of a rapid ELISA test kit for detection of Xylella fastidiosa in landscape trees. Plant Dis 75:200–203

    Google Scholar 

  • Sherkhane AS, Suryawanshi HH, Mundada PS, Shinde BP (2018) Control of bacterial blight disease of pomegranate using silver nanoparticles. J Nanosci Nanotechnol 9:1–5

    Google Scholar 

  • Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:1–14

    Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519:1156–1159

    CAS  Google Scholar 

  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265–272

    CAS  Google Scholar 

  • Sousa GFM, Gomes DG, Campos EVR, Oliveira JL, Fraceto LF, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6:12

    Google Scholar 

  • Strayer A, Ocsoy I, Tan W, Jones JB, Paret ML (2016) Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis 100:1460–1465

    CAS  PubMed  Google Scholar 

  • Strayer-Scherer AL, Liao YY, Young M, Ritchie L, Vallad GE, Santra S, Freeman JH, Clark D, Jones JB, Paret ML (2018) Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot. Phytopathology 108:196–205

    CAS  PubMed  Google Scholar 

  • Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–174

    CAS  PubMed  Google Scholar 

  • Subbaiah LV, Prasad TN, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J Agric Food Chem 64:3778–3788

    CAS  PubMed  Google Scholar 

  • Sundaram J, Pant J, Goudie MJ, Mani S, Handa H (2016) Antimicrobial and physicochemical characterization of biodegradable, nitric oxide-releasing nanocellulose–chitosan packaging membranes. J Agric Food Chem 64:5260–5266

    CAS  PubMed  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem. https://doi.org/10.1155/2013/762412

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    CAS  PubMed  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    CAS  PubMed  Google Scholar 

  • Udalova ZV, Folmanis GE, Khasanov FK, Zinovieva SV (2018) Selenium nanoparticles—an inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (Kofoid et White 1919) Chitwood 1949. Dokl Biochem Biophys 482:264–267

    CAS  PubMed  Google Scholar 

  • van Baarlen P, Van Belkum A, Summerbell RC, Crous PW, Thomma BP (2007) Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev 31:239–277

    PubMed  Google Scholar 

  • Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M (2013) Detection of Pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sensors Actuators B Chem 181:644–651

    CAS  Google Scholar 

  • Velásquez AC, Castroverde CDM, He SY (2018) Plant and pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634

    PubMed  PubMed Central  Google Scholar 

  • Velmurugan P, Lee SM, Iydroose M, Lee KJ, Oh BT (2013) Pine cone mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbiol Biotechnol 97:361–368

    CAS  PubMed  Google Scholar 

  • Velu M, Lee JH, Chang WS, Lovanh N, Park YJ, Jayanthi P, Palanivel V, Oh BT (2017) Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. 3. Biotechnology 7:147

    Google Scholar 

  • Vidic J, Stankic S, Haque F, Ciric D, Le Goffic R, Vidy A, Jupille J, Delmas B (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res 15:1595

    PubMed  PubMed Central  Google Scholar 

  • Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33

    CAS  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2:40–44

    Google Scholar 

  • Warriner K, Namvar A (2010) The tricks learnt by human enteric pathogens from phytopathogens to persist within the plant environment. Curr Opin Biotechnol 21:131–136

    CAS  PubMed  Google Scholar 

  • Wen P, Zhu DH, Wu H, Zong MH, Jing YR, Han SY (2016) Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–376

    CAS  Google Scholar 

  • Whipps J, Hand MP, Pink DA, Bending GD (2008) Human pathogens and the phyllosphere. Adv Appl Microbiol 64:183–221

    PubMed  Google Scholar 

  • WHO (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

  • Wilson MA, Tran NH, Milev AS, Kannangara GK, Volk H, Lu GM (2008) Nanomaterials in soils. Geoderma 146:291–302

    CAS  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadeta KA, Thomma Bart PHJ (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97

    PubMed  PubMed Central  Google Scholar 

  • Yadollahi A, Arzani K, Khoshghalb H (2010) The role of nanotechnology in horticultural crops postharvest management. In: Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce 875, pp 49-56

  • Yamamoto O, Ohira T, Alvarez K, Fukuda M (2010) Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B 173:208–212

    CAS  Google Scholar 

  • Yan J, Huang K, Wang Y, Liu S (2005) Study on anti-pollution nano-preparation of dimethomorph and its performance. Chin Sci Bull 50:108–112

    CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Google Scholar 

  • Yao ZC, Chang MW, Ahmad Z, Li JS (2016) Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. J Food Eng 191:115–123

    CAS  Google Scholar 

  • Yearla SR, Padmasree K (2016) Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: a case study with herbicide diuron. Environ Sci Pollut Res 23:18085–18098

    CAS  Google Scholar 

  • Zhang J, Du X, Wang Q, Chen X, Lv D, Xu K, Qu S, Zhang Z (2010) Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp.) Rehd. BMC Res Notes 3:208

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wu H, Yang Y, Wang S, Zhan X, Gao X (2013) Preparation and characterization of chitosan-HarpinXooc nanoparticles. Asian J Chem. https://doi.org/10.14233/ajchem.2013.15507

    CAS  Google Scholar 

  • Zheng LP, Zhang Z, Zhang B, Wang JW (2012) Antifungal properties of Ag-SiO2 core-shell nanoparticles against phytopathogenic fungi. Adv Mater Res 476:814–818

    Google Scholar 

Download references

Acknowledgments

RGC is thankful to UGC, New Delhi, for the award of the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jyutika M. Rajwade or K. M. Paknikar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajwade, J.M., Chikte, R.G. & Paknikar, K.M. Nanomaterials: new weapons in a crusade against phytopathogens. Appl Microbiol Biotechnol 104, 1437–1461 (2020). https://doi.org/10.1007/s00253-019-10334-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10334-y

Keywords

Navigation