Skip to main content
Log in

In Vivo Evaluation of Mg–5%Zn–2%Nd Alloy as an Innovative Biodegradable Implant Material

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 04 October 2019

This article has been updated

Abstract

Mg-based alloys have been considered as potential structural materials for biodegradable implants in orthopedic and cardiovascular applications, particularly when combined with other biocompatible alloying elements. However, the performances of Mg-based alloys in in vitro conditions do not accurately reflect their behavior in an in vivo environment. As such, the present study aimed at evaluating the in vivo behavior of a novel Mg–5Zn–2Nd–0.13Y–0.35Zr alloy designated as ZE52 alloy. In vivo assessment was carried out using cylindrical disks implanted into the sub-cutaneous layer of the skin at the back midline of male Wistar rats for up to 11 weeks. Post-implantation responses evaluated included well-being behavior, blood biochemical tests and histology. The corrosion rate of the implants, expressed in terms of hydrogen gas formation, was evaluated by radiographic assessment and CT examination. Results of the well-being behavioral and blood biochemical tests indicated that the in vivo behavior of ZE52 alloy implants was similar to that of inert Ti–6Al–4V alloy implants introduced into a control group. Moreover, histological analysis did not reveal any severe inflammation, as compared to the reference alloy. However, significant sub-cutaneous gas cavities were observed, indicative of the accelerated degradation of the ZE52 alloy implants. The accelerated degradation was also manifested by the formation of alloy debris that was encapsulated within the gas cavities. Post-implantation gas bubble puncturing resulted in the complete degradation of the Mg-based implants, indicating that the inert nature of the gas prevented accelerated degradation of the alloy before it was naturally absorbed by the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

  • 04 October 2019

    The article In Vivo Evaluation of Mg–5%Zn–2%Nd Alloy as an Innovative Biodegradable Implant Materialwritten by Elkaiam et al. was originally published electronically on the publisher’s internet portal (currently SpringerLink) on September 17, 2019 with open access. With the author(s)’ decision to step back from Open Choice, the copyright of the article changed on October 3, 2019 to Biomedical Engineering Society 2019 and the article is forthwith distributed under the terms of copyright.

References

  1. Aghion, E. Biodegradable metals. Metals 804:1–4, 2018.

    Google Scholar 

  2. Aghion, E., B. Bronfin, D. Eliezer, F. Von Buch, H. Frieddrich, and S. Schumann. The art of developing new Magnesium alloys for high temperature applications. Mater. Sci. Forum 419–422:407–418, 2003.

    Google Scholar 

  3. Aghion, E., B. Bronfin, N. Moscovitch, and Y. Gueta. Effect of yttrium additions on the properties of grain-refined Mg-3%Nd alloy. J. Mater. Sci. 43:4870–4875, 2008.

    CAS  Google Scholar 

  4. Aghion, E., T. Yered, Y. Gueta, and Y. Perez. The prospects of carrying and releasing drugs via biodegradable magnesium foam. Adv. Biomater. 8:B374–B379, 2010.

    Google Scholar 

  5. Agrawal, C. M. Reconstructing the human body using biomaterials. J. Miner. Met. Mater. Soc. 50:31–35, 1998.

    CAS  Google Scholar 

  6. Amerstorfer, F., A. Zitek, A. M. Weinberg, E. Martinelli, J. Eichler, J. Draxler, J. F. Loffler, M. Meischel, L. Fischer, P. J. Uggowitzer, S. Haan, S. E. Stanzl-Tschegg, S. F. Fischerauer, T. Kraus, and T. Prohaska. Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50. Acta Biomater. 42:440–450, 2016.

    CAS  PubMed  Google Scholar 

  7. Brar, H., M. Platt, M. Sarntinoranont, P. Martin, and M. Manuel. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61:31–34, 2009.

    CAS  Google Scholar 

  8. Bronfin, B., E. Aghion, M. Katsir, F. Von Buch, and S. Schumann. Die casting Magnesium alloys for elevate temperature applications. In: TMS Annual meeting Magnesium Technology, New Orleans, Louisiana, US, pp. 127–130, 2001.

  9. Cha, P. R., G. F. Yang, H. K. Seok, H. S. Han, J. P. Ahn, J. Y. Byun, J. Y. Jung, K. H. Hong, K. S. Lee, S. C. Lee, S. J. Yang, S. Y. Cho, Y. C. Kim, and Y. Y. Kim. Biodegradability engineering of biodegradable Mg alloys: tailoring the electrochemical properties and microstructure of constituent phases. Sci. Rep. 3(2367):1–6, 2013.

    Google Scholar 

  10. Chen, D., Y. He, H. Tao, Y. Zhang, Y. Jiang, X. Zhang, and S. Zhang. Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants. Int. J. Mol. Med. 28:343–348, 2011.

    CAS  PubMed  Google Scholar 

  11. Chen, Y., C. Smith, J. Sankar, and Z. Xu. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10:4561–4573, 2014.

    CAS  PubMed  Google Scholar 

  12. Chou, D. T., B. Lee, D. Hong, J. Ferrero, P. Saha, P. N. Kumta, Z. Q. Tan, and Z. Y. Dong. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Acta Biomater. 9:8518–8533, 2013.

    CAS  PubMed  Google Scholar 

  13. Claes, L. Mechanical characterization of biodegradable implants. Clin. Mater. 10:41–46, 1992.

    CAS  PubMed  Google Scholar 

  14. Elkaiam, L., E. Aghion, J. Goldman, and O. Hakimi. The effect of Nd on mechanical properties and corrosion performance of biodegradable Mg-5%Zn alloy. Metals 438:1–13, 2018.

    Google Scholar 

  15. Gu, X., S. Zhong, T. Xi, Y. Cheng, and Y. Zheng. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30:484–498, 2009.

    CAS  PubMed  Google Scholar 

  16. Hakimi, O., E. Aghion, and J. Goldman. Improved stress corrosion cracking resistance of a novel biodegradable EW62 Mg alloy by rapid solidification, in simulated electrolytes. Mater. Sci. Eng. C 51:226–232, 2015.

    CAS  Google Scholar 

  17. Henderson, S. E., A. J. Almarza, D. T. Chou, K. Verdelis, P. N. Kumta, S. Maiti, S. Pal, and W. L. Chung. Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater. 10:2323–2332, 2014.

    CAS  PubMed  Google Scholar 

  18. Hong, D., B. Lee, B. E. Collins, D. T. Chou, P. Saha, P. N. Kumta, Z. Q. Tan, and Z. Y. Dong. In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material. Acta Biomater. 9:8534–8547, 2013.

    CAS  PubMed  Google Scholar 

  19. Katarivas-Levy, G., E. Aghion, J. Goldman, R. Vago, and Y. Ventura. Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment. Mater. Sci. Eng. C 62:752–761, 2016.

    CAS  Google Scholar 

  20. Kety, S. S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3:1–41, 1951.

    CAS  PubMed  Google Scholar 

  21. Kraus, T., A. C. Hanzi, A. M. Weinberg, J. F. Loffler, P. J. Uggowitzer, and S. F. Fischerauer. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies on their degradation and interaction with bone. Acta Biomater. 12:1230–1238, 2012.

    Google Scholar 

  22. Kuhlaman, J., D. Hoche, E. Willbold, F. Witte, I. Bartsch, N. Hort, O. Holz, S. Schuchardt, and W. R. Heineman. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 9:8714–8721, 2013.

    Google Scholar 

  23. Levy, G., E. Aghion, and S. Ovadia. In vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. J. Mater. Sci: Mater. Med. 23:805–812, 2012.

    Google Scholar 

  24. Li, Z., S. Lou, X. Gu, and Y. Zheng. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29:1329–1344, 2008.

    CAS  PubMed  Google Scholar 

  25. Mordike, B. L., and P. Lukác. Physical metallurgy. In: Magnesium technology—metallurgy, design data, applications, edited by H. E. Friedrich, and B. L. Mordike. Berlin: Springer, 2006, pp. 76–77.

    Google Scholar 

  26. Poiner, E., D. Fawcett, and S. Brundavanam. Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2:218–240, 2012.

    Google Scholar 

  27. Power, G. G., and H. Stegall. Solubility of gases in human red blood cell ghosts. J. Appl. Physiol. 29:145–149, 1970.

    CAS  PubMed  Google Scholar 

  28. Remennik, S., D. Shechtman, E. Willbold, F. Witte, I. Bartsch, and I. New. fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants. Mater. Sci. Eng. B 176:1653–1659, 2011.

    CAS  Google Scholar 

  29. Shuhua, C., F. Fangfang, L. Nianfeng, and L. Ting. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mater. Sci. Eng. C 32:2570–2577, 2012.

    Google Scholar 

  30. Song, G. Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49:1696–1701, 2007.

    CAS  Google Scholar 

  31. Staige, M. P., A. M. Pietak, G. Dias, and J. Huadmai. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.

    Google Scholar 

  32. Tapiero, H., and K. D. Tew. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother. 57:399–411, 2003.

    CAS  PubMed  Google Scholar 

  33. Uhthoff, H. K., D. S. Backman, and P. Poitras. Internal plate fixation of fractures: short history and recent developments. J. Orthop. Sci. 11:118–126, 2006.

    PubMed  PubMed Central  Google Scholar 

  34. Van Slyke, D. D., and J. J. Sendroy. Studies of gas and electrolyte equilibria in blood. XI. The solubility of hydrogen at 38° in blood serum and cells. J. Biol. Chem. 78:801–805, 1928.

    Google Scholar 

  35. Wang, Y., G. Yuan, J. Niu, J. Zhang, L. Mao, Y. He, Y. Jiang, and Z. Zhu. In vivo degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy at early stage. Int. J. Mol. Med. 29:178–184, 2011.

    PubMed  Google Scholar 

  36. Wen, C. E., M. Mabuchi, K. Shimojima, T. Asahina, Y. Chino, and Y. Yamada. Processing of biocompatible porous Ti and Mg. Scr. Mater. 45:1147–1153, 2001.

    CAS  Google Scholar 

  37. Witte, F., A. Meyer-Lindenberg, C. J. Wirth, E. Switzer, H. Haferkamp, H. Windhagen, and V. Kaese. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563, 2005.

    CAS  PubMed  Google Scholar 

  38. Witte, F., A. Pisch, F. Beckmann, H. A. Crostack, H. Windhagen, J. Fischer, J. Nellesen, and V. Kaese. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018, 2006.

    CAS  PubMed  Google Scholar 

  39. Witte, F., C. Vogt, F. Feyerabend, K. U. Kainer, N. Hort, R. Willumeit, and S. Cohen. Degradable biomaterials on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12:63–72, 2008.

    CAS  Google Scholar 

  40. Yun, Y. H., C. Fox, D. Doepke, D. Hurd, D. Xue, H. B. Halsall, J. Kuhlmall, N. Lee, M. J. Schulz, P. Nagy, S. Sundaramurthy, V. N. Shanov, W. Li, W. R. Heineman, X. Guo, Y. Liu, Z. Dong, and Z. Yin. Revolutionizing biodegradable metals. Mater. Today 12:22–32, 2009.

    CAS  Google Scholar 

  41. Zhang, E., F. Pan, G. Yu, K. Yang, and L. Xu. In vivo evaluation of biodegradable alloy bone implant in the first 6 months implantation. J. Bio. Mater. Res. Part A 90:882–893, 2008.

    Google Scholar 

  42. Zhang, S., C. Xie, C. Zhao, H. Tao, J. Li, Y. Song, Y. Bian, Y. He, Y. Jiang, Y. Zhang, and X. Zhang. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Mater. Sci. Eng. C 29:1907–1912, 2009.

    CAS  Google Scholar 

  43. Zhang, S., C. Xie, C. Zhoa, H. Tao, J. Li, X. Zhang, Y. Bian, Y. He, Y. Jiang, Y. Song, and Y. Zhang. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 6:626–640, 2010.

    CAS  PubMed  Google Scholar 

  44. Zhao, D., D. Hong, J. Kuhlmann, M. Joshi, P. Salunke, P. N. Kumta, S. Chen, T. Wang, V. N. Shanov, W. R. Heinema, and Z. Dong. In vivo monitoring the biodegradable of magnesium alloys with an electrochemical H2 sensor. Acta Biomater. 36:361–368, 2016.

    CAS  PubMed  Google Scholar 

  45. Zhao, D., F. Lu, F. Witte, J. Li, J. Wang, and L. Qin. Current status on clinical applications of magnesium-based orthopedic implants: a review from clinical translational perspective. Biomaterials 112:287–302, 2017.

    CAS  PubMed  Google Scholar 

  46. Zucchi, F., A. Frignani, C. Monticelli, G. Trabanelli, and V. Grass. Electrochemical behavior of a magnesium alloy containing rare earth elements. J. Appl. Electrochem. 26:195–204, 2006.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Ilan Shelef for assistance with CT examination.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hakimi.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to a retrospective Open Access order cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkaiam, L., Hakimi, O., Yosafovich-Doitch, G. et al. In Vivo Evaluation of Mg–5%Zn–2%Nd Alloy as an Innovative Biodegradable Implant Material. Ann Biomed Eng 48, 380–392 (2020). https://doi.org/10.1007/s10439-019-02355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02355-5

Keywords

Navigation