Skip to main content
Log in

Hand-Held Instrument with Integrated Parallel Mechanism for Active Tremor Compensation During Microsurgery

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Physiological hand tremor seriously influences the surgical instrument’s tip positioning accuracy during microsurgery. To solve this problem, hand-held active tremor compensation instruments are developed to improve tip positioning accuracy during microsurgery. This paper presents the design and performance of a new hand-held instrument that aims to stabilize hand tremors and increase accuracy in microsurgery. The key components are a three degrees of freedom (DOF) integrated parallel manipulator and a high-performance inertial measurement unit (IMU). The IMU was developed to sense the 3-DOF motion of the instrument tip. A customized filter was applied to extract specific hand tremor motion. Then, the instrument was employed to generate the reverse motion simultaneously to reduce tremor motion. Experimental results show that the tremor compensation mechanism is effective. The average RMS reduction ratio of bench test is 56.5% that is a significant tremor reduction ratio. For hand-held test, it has an average RMS reduction ratio of 41.0%. Hence, it could reduce hand tremor magnitudes by 31.7% RMS in 2-DOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adhikari, K., S. Tatinati, K. C. Veluvolu, J. A. Chambers, and K. Nazarpour. Real-time physiological tremor estimation using recursive singular spectrum analysis. Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3202–3205, 2017.

  2. Ang, W. T., P. K. Khosla, and C. N. Riviere. Kalman filtering for real-time orientation tracking of handheld microsurgical instrument. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2574–2580, 2004.

  3. Balicki, M., A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor. Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 303–310, 2010.

    Chapter  Google Scholar 

  4. Chang, D., G. M. Gu, and J. Kim. Design of a novel tremor suppression device using a linear delta manipulator for micromanipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 413–418, 2013.

  5. Choi, D. Y., and C. N. Riviere. Flexure-based manipulator for active handheld microsurgical instrument. Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2325–2328, 2006.

  6. Edwards, T. L., K. Xue, H. C. M. Meenink, M. J. Beelen, G. J. L. Naus, M. P. Simunovic, M. Latasiewicz, A. D. Farmery, M. D. de Smet, and R. E. MacLaren. First-in-human study of the safety and viability of intraocular robotic surgery. Nat. Biomed. Eng. 2(9):649, 2018.

    Article  CAS  Google Scholar 

  7. Giataganas, P., M. Hughes, C. J. Payne, P. Wisanuvej, B. Temelkuran, and G. Z. Yang. Intraoperative robotic-assisted large-area high-speed microscopic imaging and intervention. IEEE Trans. Biomed. Eng. 66(1):208–216, 2019.

    Article  Google Scholar 

  8. Gupta, P. K., P. S. Jensen and E. De Juan, Surgical forces and tactile perception during retinal microsurgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 1218–1225, 1999.

    Chapter  Google Scholar 

  9. Harwell, R. C., and R. L. Ferguson. Physiologic tremor and microsurgery. Microsurgery 4(3):187–192, 1983.

    Article  CAS  Google Scholar 

  10. Hotraphinyo, L. F., and C. N. Riviere. Three-dimensional accuracy assessment of eye surgeons. In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3458–3461, 2001.

  11. Latt, W. T., U. X. Tan, C. Y. Shee, and W. T. Ang. A compact hand-held active physiological tremor compensation instrument. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 711–716, 2009.

  12. Lee, K. M., and D. K. Shah. Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator. IEEE J. Rob. Autom. 4(3):354–360, 1988.

    Article  Google Scholar 

  13. Li, Y., and Q. Xu. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation. IEEE Trans. Autom. Sci. Eng. 8(2):265–279, 2011.

    Article  Google Scholar 

  14. MacLachlan, R. A., B. C. Becker, J. C. Tabarés, G. W. Podnar, L. A. Lobes, Jr, and C. N. Riviere. Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans. Robot. 28(1):195, 2012.

    Article  Google Scholar 

  15. MacLachlan, R. A., R. L. Hollis, J. N. Martel, L. A. Lobes Jr, and C. N. Riviere. Toward improved electromagnetic tracking for handheld robotics. In: Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering, pp. 75–80, 2017.

  16. MacLachlan, R. A., N. Parody, S. Mukherjee, R. L. Hollis, C. N. Riviere, J. N. Martel and L. A. Lobes. Electromagnetic tracker for active handheld robotic systems. IEEE Sensor J, pp. 1–3, 2016.

  17. MacLachlan, R. A., and C. N. Riviere. High-speed microscale optical tracking using digital frequency-domain multiplexing. IEEE Trans. Instrum. Meas. 58(6):1991–2001, 2009.

    Article  Google Scholar 

  18. Moccia, S., S. Foti, A. Routray, F. Prudente, A. Perin, R. F. Sekula, L. S. Mattos, J. R. Balzer, W. F. Mayle, E. D. Momi, and C. N. Riviere. Toward improving safety in neurosurgery with an active handheld instrument. Ann. Biomed. Eng. 46(10):1450–1464, 2018.

    Article  Google Scholar 

  19. Mukherjee, S., R. MacLachlan, and C. Riviere. Velocity-limiting control of an active handheld micromanipulator. J. Med. Device 10(3):030944, 2016.

    Article  Google Scholar 

  20. Payne, C. J., and G. Z. Yang. Hand-held medical robots. Ann. Biomed. Eng. 42(8):1594–1605, 2014.

    Article  Google Scholar 

  21. Riviere, C. N., and P. S. Jensen. A study of instrument motion in retinal microsurgery. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 59–60, 2000.

  22. Schenker, P. S., H. Das, and T. R. Ohm. Development of a new high-dexterity manipulator for robot-assisted microsurgery. In: Telemanipulator and Telepresence Technologies, pp. 191–198, 1995.

  23. Song, C., P. L. Gehlbach, and J. U. Kang. Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography. Opt. Express. 20(21):23414–23421, 2012.

    Article  Google Scholar 

  24. Tang, X., and I. M. Chen. A large-displacement 3-DOF flexure parallel mechanism with decoupled kinematics structure. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1668–1673, 2006.

  25. Tatinati, S., K. Nazarpour, W. T. Ang, and K. C. Veluvolu. Multidimensional modeling of physiological tremor for active compensation in handheld surgical robotics. IEEE Trans. Ind. Electron. 64(2):1645–1655, 2016.

    Article  Google Scholar 

  26. Tatinati, S., K. C. Veluvolu, and W. T. Ang. Multistep prediction of physiological tremor based on machine learning for robotics assisted microsurgery. IEEE Trans. Cybern. 45(2):328–339, 2014.

    Article  Google Scholar 

  27. Tatinati, S., K. C. Veluvolu, S. M. Hong, W. T. Latt, and W. T. Ang. Physiological tremor estimation with autoregressive (AR) model and Kalman filter for robotics applications. IEEE Sens. J. 13(12):4977–4985, 2013.

    Article  Google Scholar 

  28. Taylor, R., P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. Dejuan, and L. Kavoussi. A steady-hand robotic system for microsurgical augmentation. Int. J. Rob. Res. 18(12):1201–1210, 1999.

    Article  Google Scholar 

  29. Taylor, R. H., A. Menciassi, G. Fichtinger, P. Fiorini, and P. Dario. Medical Robotics and Computer-Integrated Surgery. New York: Springer, 2016.

    Book  Google Scholar 

  30. Veluvolu, K. C., U. X. Tan, W. T. Latt, C. Y. Shee, and W. T. Ang. Bandlimited multiple fourier linear combiner for real-time tremor compensation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2847–2850, 2007.

  31. Veluvolu, K. C., S. Tatinati, S. M. Hong, and W. T. Ang. Multistep prediction of physiological tremor for surgical robotics applications. IEEE Trans. Biomed. Eng. 60(11):3074–3082, 2013.

    Article  Google Scholar 

  32. Vendrametto, T., J. S. McAfee, B. E. Hirsch, C. N. Riviere, G. Ferrigno, and E. De Momi. Robot assisted stapedotomy ex vivo with an active handheld instrument. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4879–4882, 2015.

  33. Wells, T. S., S. Yang, R. A. MacLachlan, L. A. Lobes, Jr, J. N. Martel, and C. N. Riviere. Hybrid position/force control of an active handheld micromanipulator for membrane peeling. Int. J. Med. Robot. Comp. 12(1):85–95, 2016.

    Article  Google Scholar 

  34. Yang, S., R. A. MacLachlan, J. N. Martel, L. A. Lobes, and C. N. Riviere. Comparative evaluation of handheld robot-aided intraocular laser surgery. IEEE Trans. Robot 32(1):246–251, 2016.

    Article  Google Scholar 

  35. Yang, S., R. A. MacLachlan, and C. N. Riviere. Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument. IEEE-ASME Trans. Mech. 20(2):761–772, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China under Grant Nos. 61773280 and in part by Tianjin Municipal Science and Technology Department Program No. 16JCYBJC40700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyang Zuo.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Gong, L., Wang, S. et al. Hand-Held Instrument with Integrated Parallel Mechanism for Active Tremor Compensation During Microsurgery. Ann Biomed Eng 48, 413–425 (2020). https://doi.org/10.1007/s10439-019-02358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02358-2

Keywords

Navigation