Skip to main content
Log in

Primary sclerosing cholangitis: diagnostic performance of MRI compared to blood tests and clinical scoring systems for the evaluation of histopathological severity of disease

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the diagnostic performance of magnetic resonance imaging (MRI) compared to blood tests and clinical scoring systems for the evaluation of histopathologic severity in patients with primary sclerosing cholangitis (PSC).

Materials

Fifty-one patients (M/F 37/14, mean age 41 years) with PSC who underwent MRI and liver histopathology were included in this IRB-approved retrospective study. Two radiologists independently graded the severity of biliary abnormalities on magnetic resonance cholangiopancreatography (MRCP) using a standardized scoring system, parenchymal enhancement, and diffusion-weighted imaging (DWI) signal. Liver function tests, Mayo Risk score, APRI, FIB-4 Index, MELD, and Child–Pugh scores were recorded. Histopathology was assessed using a modified Nakanuma’s scoring system. Correlation and diagnostic performance of MRI scores and blood tests for assessment of PSC histopathologic disease severity were evaluated.

Results

Findings of cirrhosis and portal hypertension were the only imaging features diagnostic of advanced PSC (stages 3 and 4) with AUC up to 0.90 (p < 0.001) for both observers. Parenchymal enhancement and overall qualitative biliary ductal abnormality identified advanced PSC stage with AUC up to 0.767 (p = 0.002) only for one observer. There was weak correlation between the overall qualitative biliary ductal abnormality on MRCP and histopathologic stage (r = 0.36, p = 0.01) for one observer. FIB-4 index, Child–Pugh, MELD, Mayo Risk, APRI, and alkaline phosphatase demonstrated good to excellent performance for advanced PSC stage (AUCs 0.672–0.915, p < 0.045).

Conclusions

MRI findings of cirrhosis/portal hypertension, blood tests, and clinical scoring systems had high performance for advanced histopathologic PSC stage diagnosis, while the severity of biliary abnormalities on MRI did not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

APRI:

AST to Platelet Ratio Index

DWI:

Diffusion-weighted imaging

EHD:

Extrahepatic duct

ERC:

Endoscopic retrograde cholangiography

HASTE:

Half-Fourier acquisition single-shot turbo spin echo imaging

HBP:

Hepatobiliary phase

LAVA:

Liver acquisition with volume acceleration

LIH:

Left intrahepatic duct

LLIHD:

Left lateral intrahepatic duct

LMIHD:

Left medial intrahepatic duct

MELD:

Model for end-stage liver disease

MRCP:

Magnetic resonance cholangiopancreatography

MRI:

Magnetic resonance imaging

PSC:

Primary sclerosing cholangitis

RAIHD:

Right anterior intrahepatic duct

ROI:

Region of interest

RIH:

Right intrahepatic duct

RPIHD:

Right posterior intrahepatic duct

SSFSE:

Single-shot fast spin echo

VIBE:

Volumetric interpolated breath-hold examination

References

  1. Silveira, M.G. and K.D. Lindor, Primary sclerosing cholangitis. Can J Gastroenterol, 2008. 22(8): p. 689-98.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ni Mhuircheartaigh, J.M., et al., Early Peribiliary Hyperenhancement on MRI in Patients with Primary Sclerosing Cholangitis: Significance and Association with the Mayo Risk Score. Abdom Radiol (NY), 2017. 42(1): p. 152-158.

    Article  Google Scholar 

  3. Nilsson, H., et al., Dynamic gadoxetate-enhanced MRI for the assessment of total and segmental liver function and volume in primary sclerosing cholangitis. J Magn Reson Imaging, 2014. 39(4): p. 879-86.

    Article  PubMed  Google Scholar 

  4. Nolz, R., et al., Diagnostic workup of primary sclerosing cholangitis: the benefit of adding gadoxetic acid-enhanced T1-weighted magnetic resonance cholangiography to conventional T2-weighted magnetic resonance cholangiography. Clin Radiol, 2014. 69(5): p. 499-508.

    Article  CAS  PubMed  Google Scholar 

  5. Olsson, R., et al., High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology, 2005. 129(5): p. 1464-72.

    Article  CAS  PubMed  Google Scholar 

  6. Ponsioen, C.Y., et al., Surrogate endpoints for clinical trials in primary sclerosing cholangitis: Review and results from an International PSC Study Group consensus process. Hepatology, 2016. 63(4): p. 1357-67.

    Article  PubMed  Google Scholar 

  7. Ponsioen, C.Y., et al., Natural history of primary sclerosing cholangitis and prognostic value of cholangiography in a Dutch population. Gut, 2002. 51(4): p. 562-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindstrom, L., et al., Association between reduced levels of alkaline phosphatase and survival times of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol, 2013. 11(7): p. 841-6.

    Article  PubMed  CAS  Google Scholar 

  9. Stanich, P.P., et al., Alkaline phosphatase normalization is associated with better prognosis in primary sclerosing cholangitis. Dig Liver Dis, 2011. 43(4): p. 309-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eaton, J.E., et al., Performance of magnetic resonance elastography in primary sclerosing cholangitis. J Gastroenterol Hepatol, 2016. 31(6): p. 1184-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ruiz, A., et al., Radiologic course of primary sclerosing cholangitis: assessment by three-dimensional magnetic resonance cholangiography and predictive features of progression. Hepatology, 2014. 59(1): p. 242-50.

    Article  PubMed  Google Scholar 

  12. Portmann, B. and Y. Zen, Inflammatory disease of the bile ducts-cholangiopathies: liver biopsy challenge and clinicopathological correlation. Histopathology, 2012. 60(2): p. 236-48.

    Article  PubMed  Google Scholar 

  13. de Vries, E.M., et al., Applicability and prognostic value of histologic scoring systems in primary sclerosing cholangitis. J Hepatol, 2015. 63(5): p. 1212-9.

    Article  PubMed  Google Scholar 

  14. Petrovic, B.D., et al., Correlation between findings on MRCP and gadolinium-enhanced MR of the liver and a survival model for primary sclerosing cholangitis. Dig Dis Sci, 2007. 52(12): p. 3499-506.

    Article  PubMed  Google Scholar 

  15. Corpechot, C., et al., Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology, 2014. 146(4): p. 970-9; quiz e15-6.

  16. Hinrichs, H., et al., Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC). Eur Radiol, 2016. 26(4): p. 1116-24.

    Article  PubMed  Google Scholar 

  17. Kovac, J.D., et al., MR imaging of primary sclerosing cholangitis: additional value of diffusion-weighted imaging and ADC measurement. Acta Radiol, 2013. 54(3): p. 242-8.

    Article  PubMed  Google Scholar 

  18. Kim, W.R., et al., The relative role of the Child-Pugh classification and the Mayo natural history model in the assessment of survival in patients with primary sclerosing cholangitis. Hepatology, 1999. 29(6): p. 1643-8.

    Article  CAS  PubMed  Google Scholar 

  19. Olsson, R.G. and M.S. Asztely, Prognostic value of cholangiography in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol, 1995. 7(3): p. 251-4.

    CAS  PubMed  Google Scholar 

  20. Rudolph, G., et al., Influence of dominant bile duct stenoses and biliary infections on outcome in primary sclerosing cholangitis. J Hepatol, 2009. 51(1): p. 149-55.

    Article  PubMed  Google Scholar 

  21. Stiehl, A., et al., Development of dominant bile duct stenoses in patients with primary sclerosing cholangitis treated with ursodeoxycholic acid: outcome after endoscopic treatment. J Hepatol, 2002. 36(2): p. 151-6.

    Article  PubMed  Google Scholar 

  22. Vesterhus, M., et al., Enhanced liver fibrosis score predicts transplant-free survival in primary sclerosing cholangitis. Hepatology, 2015. 62(1): p. 188-97.

    Article  PubMed  Google Scholar 

  23. Dave, M., et al., Primary sclerosing cholangitis: meta-analysis of diagnostic performance of MR cholangiopancreatography. Radiology, 2010. 256(2): p. 387-96.

    Article  PubMed  Google Scholar 

  24. Frydrychowicz, A., et al., Gadoxetic acid-enhanced T1-weighted MR cholangiography in primary sclerosing cholangitis. J Magn Reson Imaging, 2012. 36(3): p. 632-40.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ringe, K.I., et al., Gadoxetate disodium in patients with primary sclerosing cholangitis: an analysis of hepatobiliary contrast excretion. J Magn Reson Imaging, 2014. 40(1): p. 106-12.

    Article  PubMed  Google Scholar 

  26. Schramm, C., et al., Recommendations on the use of magnetic resonance imaging in PSC-A position statement from the International PSC Study Group. Hepatology, 2017. 66(5): p. 1675-1688.

    Article  PubMed  Google Scholar 

  27. Keller, S., et al., Association of gadolinium-enhanced magnetic resonance imaging with hepatic fibrosis and inflammation in primary sclerosing cholangitis. PLoS One, 2018. 13(3): p. e0193929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Keller, S., et al., Prospective comparison of diffusion-weighted MRI and dynamic Gd-EOB-DTPA-enhanced MRI for detection and staging of hepatic fibrosis in primary sclerosing cholangitis. Eur Radiol, 2019. 29(2): p. 818-828.

    Article  CAS  PubMed  Google Scholar 

  29. Tenca, A., et al., The role of magnetic resonance imaging and endoscopic retrograde cholangiography in the evaluation of disease activity and severity in primary sclerosing cholangitis. Liver Int, 2018.

  30. Kim, W.R., et al., A revised natural history model for primary sclerosing cholangitis. Mayo Clin Proc, 2000. 75(7): p. 688-94.

    Article  CAS  PubMed  Google Scholar 

  31. Kamath, P.S., W.R. Kim, and G. Advanced Liver Disease Study, The model for end-stage liver disease (MELD). Hepatology, 2007. 45(3): p. 797-805.

    Article  PubMed  Google Scholar 

  32. Kim, B.K., et al., Validation of FIB-4 and comparison with other simple noninvasive indices for predicting liver fibrosis and cirrhosis in hepatitis B virus-infected patients. Liver Int, 2010. 30(4): p. 546-53.

    Article  PubMed  Google Scholar 

  33. Durand, F. and D. Valla, Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J Hepatol, 2005. 42 Suppl(1): p. S100-7.

  34. Nakanuma, Y., et al., Application of a new histological staging and grading system for primary biliary cirrhosis to liver biopsy specimens: Interobserver agreement. Pathol Int, 2010. 60(3): p. 167-74.

    Article  PubMed  Google Scholar 

  35. Lemoinne, S., et al., Simple Magnetic Resonance Scores Associate With Outcomes of Patients With Primary Sclerosing Cholangitis. Clin Gastroenterol Hepatol, 2019.

  36. Corpechot, C., Utility of Noninvasive Markers of Fibrosis in Cholestatic Liver Diseases. Clin Liver Dis, 2016. 20(1): p. 143-58.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Lewis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Lewis, S., Kamath, A. et al. Primary sclerosing cholangitis: diagnostic performance of MRI compared to blood tests and clinical scoring systems for the evaluation of histopathological severity of disease. Abdom Radiol 45, 354–364 (2020). https://doi.org/10.1007/s00261-019-02366-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02366-9

Keywords

Navigation