Skip to main content

Advertisement

Log in

Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The importance of crucial nutrient factors like Phosphate (P) and their limited availability leads to variable fluctuations in fatty acid and phospholipid synthesis in the green alga. These fatty acids and phospholipids are an imperative byproduct of alga which used in biofuel production. The production of phospholipids in alga might be naturally enhanced by the optimized supplied by specific essential nutrient like Phosphate. In this study, green alga Chlamydomonas reinhardtii was cultivated in phosphate stress condition to obtain maximum phospholipids. In the stress condition, the organism exhibited variable changes in chlorophyll, fatty acid, and phospholipid compositions. These parameters analyzed by biomass, X-ray, GC, and TLC. Remarkably, saturated fatty acids, monounsaturated, and di-unsaturated fatty acids amounts, increases, while polyunsaturated fatty acids to decrease markedly. The maximum fatty acid content observed at 0.4 mgl−1 P content in growing media. A broad peak area of 56% of hexadecanoic acid (C 16:0) and followed by 28.8% linolenic (C18:3) was observed in GC analysis. These results indicate the essential fatty acid accumulation maximized at particular phosphate concentration in growing media. This necessary and essential fatty acid production from green algae in a sustainable manner is an inexpensive and excellent way for commercialization and biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aksoy M, Pootakham W, Grossman AR (2014) Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. Plant Cell 26:4214–4229

    Article  CAS  Google Scholar 

  • Aluyi HS, Boote V, Drucker DB, Wilson JM (1994) Fast atom bombardment-mass spectrometry for bacterial chemotaxonomy: influence of culture age, growth temperature, gaseous environment and extraction technique. J Appl Microbiol 72:80–86

    Article  Google Scholar 

  • Bellinger EG, Sigee DC (2015) Freshwater algae: Identification, enumeration and use as bioindicators, 2nd Edition. Publisher Wiley-Blackwell, Hoboken, pp 1–290

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  Google Scholar 

  • Carvalho AP, Monteiro CM, Malcata FX (2009) Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. J Appl Phycol 21:543–552

    Article  Google Scholar 

  • Chen M, Li J, Dai X, Sun Y, Chen F (2011) Effect of phosphate and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology 12:187–192

    Article  CAS  Google Scholar 

  • Dammak M, Haase SM, Miladi R, Ben Amor F, Barkallah M, Gosset D, Pichon C, Huchzermeyer B, Fendri I, Denis M, Abdelkafi S (2016) Enhanced lipid and biomass production by a newly isolated and identified marine microalga. Lipids Health Dis 15:209. https://doi.org/10.1186/s12944-016-0375-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta CN, Suseela MR, Mandotra SK, Kumar P, Pandey MK, Toppo K, Lone JA (2015) Dual uses of microalgal biomass: an integrative approach for biohydrogen and biodiesel production. Appl Energy 146:202–208

    Article  CAS  Google Scholar 

  • Devadasu E, Chinthapalli DK, Chouhan N, Madireddi SK, Rasineni GK, Sripadi P, Subramanyam R (2018) Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency. Photosynth Res 139:253–266. https://doi.org/10.1007/s11120-018-0580-2. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  • Eggink LL, Park H, Hoober JK (2012) The role of the envelope in the assembly of light-harvesting complexes in the chloroplasts: distribution of LHCP between chloroplasts and vacuoles during chloroplast development in Chlamydomonas reinhardtii. In: Argyroudi-Akoyunoglou JH, Senger H (eds) The chloroplast: from molecular biology to biotechnology, vol 64. Springer, Berlin, pp 161–166

    Google Scholar 

  • Encarnação T, Burrows HD, Pais AC, Campos MG, Kremer A (2012) Effect of N and P on the uptake of magnesium and iron and on the production of carotenoids and chlorophyll by the microalgae Nannochloropsis sp. J Agric Sci Technol A 2:824–832

    Google Scholar 

  • Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17

    Article  Google Scholar 

  • Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585(12):1985–1991. https://doi.org/10.1016/j.febslet.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  • Farkas I, Szerdahelyi P, Kása P (1988) An indirect method for the quantitation of cellular zinc content of Timm-stained cerebellar samples by energy dispersive X-ray microanalysis. Histochem 89(5):493–497

    Article  CAS  Google Scholar 

  • Fried B, Sherma J (1999) Thin-layer chromatography, 4th edn. New York, Marcel Dekker

    Google Scholar 

  • Giroud C, Eichenberger W (1988) Fatty-acids of Chlamydomonas reinhardtii – structure, positional distribution and biosynthesis. Biol Chem H-S 369:18–19

    Google Scholar 

  • Goncalves EC, Koh J, Zhu N, Yoo MJ, Chen S, Matsuo T, Johnson JV, Rathinasabapathi B (2016) Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC40, a transcription factor involved in circadian rhythm. Plant J 85:743–757. https://doi.org/10.1111/tpj.13144

    Article  CAS  PubMed  Google Scholar 

  • Grossman A (2000) Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist 151:201–224

    Article  CAS  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  CAS  Google Scholar 

  • Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A (2014) Perspectives on engineering strategies for improving biofuel production from microalgae–a critical review. Biotechnol Adv 32:1448–1459. https://doi.org/10.1016/j.biotechadv.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Ikeda K, Shimojima M, Ohta H (2014) Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphate starvation-inducible promoter. Plant Biotechnol J 6:808–819. https://doi.org/10.1111/pbi.12210

    Article  CAS  Google Scholar 

  • Janero DR, Barrnett R (1981) Cellular and thylakoid-membrane phospholipids of Chlurnydomonus reinhurdtii 137+. Lipid Res 22:1126–1130

    CAS  Google Scholar 

  • Kropat J, Hong Hermesdrof A, Casero D, Ent P, Castruita M, Pellegrini M, Aerehant SS, Malasaran D (2011) Revised mineral nutrient supplement increases the biomass and growth rate in Chlamydomonas reinhardtii. Plant J 66:770–780. https://doi.org/10.1111/j1365-313X201104537x

  • Li X, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphate concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016

    Article  CAS  Google Scholar 

  • Maity JP, Bundschuh J, Chen C, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Mandotra SK, Pankaj K, Suseela MR, Nayaka S, Ramteke PW (2016) Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphate, pH and light intensities. Bioresour Technol 201:222–229. https://doi.org/10.1016/j.biortech.2015.11.042

    Article  CAS  PubMed  Google Scholar 

  • Nehring R (2009) Traversing the mountaintop: world fossil fuel production to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1532):3067–3079. https://doi.org/10.1098/rstb.2009.0170

    Article  Google Scholar 

  • Nguyen HM, Cuiné S, Beyly-Adriano A, Légeret B, Billon E, Auroy P, Beisson F, Peltier G, Li-Beisson Y (2013) The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid Desaturase that localizes to the chloroplast and impacts both Plastidic and Extraplastidic membrane lipids. Plant Physiol 163:914–928. https://doi.org/10.1104/pp.113.223941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira DPK, Silva AF, Araújo OQF, Chaloub RM (2015) Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass Bioenergy 72:280–287

    Article  Google Scholar 

  • Portis AR (1995) The regulation of Rubisco by Rubisco activase. J Exp Bot 46:1285–1291

    Article  CAS  Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    Article  CAS  Google Scholar 

  • Shimogawara K, Wykoff DD, Usuda H, Grossman AR (1999) Chlamydomonas reinhardtii mutants abnormal in their responses to phosphate deprivation. Plant Physiol 120:685–694

    Article  CAS  Google Scholar 

  • Siaut M, Cuine S, Cagnon C et al (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  Google Scholar 

  • Spijkerman E, Wacker A (2011a) Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga. Extremophiles 15:597

    Article  CAS  Google Scholar 

  • Spijkerman E, Wacker A (2011b) Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga. Extremophiles 5:597–609. https://doi.org/10.1007/s00792-011-0390-3

    Article  CAS  Google Scholar 

  • Touchstone JC, Chen JC, Beaver KM (1980) Improved separation of phospholipids in thin layer chromatography. Lipids 15:61–62

    Article  CAS  Google Scholar 

  • Wang X, Shen Z, Miao X (2016) Nitrogen and hydro phosphate affect glycolipids composition in microalgae. Sci Report 6:30145. https://doi.org/10.1038/srep30145

    Article  CAS  Google Scholar 

  • Wardle HM, Drucker DB, Joseph LA (1996) Phospholipid molecular species of Bacteroides. J Appl Microbiol 80:551–556

    CAS  Google Scholar 

  • Weber AP (2004) Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol 7:247–253

    Article  CAS  Google Scholar 

  • Yang D, Song D, Kind T, Ma Y, Hoefkens J, Fiehn O (2015) Lipidomic analysis of Chlamydomonas reinhardtii under nitrogen and sulfur deprivation. PLoS One 10(9):e0137948. https://doi.org/10.1371/journal.pone.0137948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran QG, Yoon HR, Cho K, Lee SJ, Crespo JL, Ramanan R, Kim HS (2019) Dynamic interactions between Autophagosomes and lipid droplets in Chlamydomonas reinhardtii. Cells 8(9):E992. https://doi.org/10.3390/cells8090992

    Article  PubMed  Google Scholar 

  • Cronmiller E, Toor D, Shao NC, Kariyawasam T, Wang MH, Lee JH (2019) Cell wall integrity signaling regulates cell wall-related gene expression in Chlamydomonas reinhardtii. Sci Rep 9(1):12204. https://doi.org/10.1038/s41598-019-48523-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roustan V, Bakhtiari S, Roustan PJ, Weckwerth W (2017) Quantitative in vivo phosphoproteomics reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel model organism Chlamydomonas reinhardtii. Biotechnol Biofuels 10:280. https://doi.org/10.1186/s13068-017-0949-z eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research work is based on the development of green, sustainable technology, supported by the Centre of Excellence in Environmental Studies and Biological Science, Department of King Abdul Aziz University, Jeddah, KSA and Department of Biological Science, and extended thanks to the Deanship of Scientific Research support under the project grant (HICi-35-130-2) by King Abdul Aziz University, and Manchester University, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huda A Qari or Mohammad Oves.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qari, H.A., Oves, M. Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation. J Bioenerg Biomembr 52, 27–38 (2020). https://doi.org/10.1007/s10863-019-09813-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-019-09813-8

Keywords

Navigation