Skip to main content
Log in

Indirect determination of mercury(II) by using magnetic nanoparticles, CdS quantum dots and mercury(II)-binding aptamers, and quantitation of released CdS by graphite furnace AAS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This work describes an aptamer based method for highly sensitive determination of Hg(II). A Hg(II)-binding ssDNA aptamer was linked to silica-coated magnetic nanoparticles (magNPs). Then, a conjugate composed of graphene and CdS quantum dots (Gr-CdS) was linked to the complementary ssDNA. On mixing the two components, a duplex of type magNP-dsNNA-Gr/CdS is generated. If Hg(II) is added, it wills capturing the aptamer, and this leads to the release of Gr/CdS because of the formation of a stable thymine-Hg2+-thymine link. External magnetic force is used to remove the remaining complex. The released graphene-CdS is decomposed by HNO3 and injected into a graphite furnace AAS. The detectable amount of Cd is proportional to the concentration of Hg(II) in the sample. Under the optimal conditions, the method has a linear response in the 2.50 aM to 0.25 nM Hg(II) concentration range, and the detection limit is as low as 7.6 aM (at S/N = 3). It has high selectivity for Hg(II) over other metal ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  CAS  Google Scholar 

  2. EPA US (2001) Mercury Update: Impact on Fish Advisories. EPA Fact Sheet EPA-823-F-01-011

  3. Domínguez MA, Grünhut M, Pistonesi MF et al (2012) Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment. J Agric Food Chem 60:4812–4817

    Article  Google Scholar 

  4. Liu Z, Zhu Z, Wu Q et al (2011) Dielectric barrier discharge-plasma induced vaporization and its application to the determination of mercury by atomic fluorescence spectrometry. Analyst 136:4539–4544

    Article  CAS  Google Scholar 

  5. Wang M, Feng W, Shi J et al (2007) Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC–ICP-MS. Talanta 71:2034–2039

    Article  CAS  Google Scholar 

  6. Kodamatani H, Matsuyama A, Saito K et al (2012) Sensitive determination method for mercury ion, methyl-, ethyl-, and phenyl-mercury in water and biological samples using high-performance liquid chromatography with chemiluminescence detection. Anal Sci 28:959–965

    Article  CAS  Google Scholar 

  7. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(80):505–510

    Article  CAS  Google Scholar 

  8. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818

    Article  CAS  Google Scholar 

  9. Kim YS, Raston NHA, Gu MB (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19

    Article  Google Scholar 

  10. Palecek E, Bartosik M (2012) Electrochemistry of nucleic acids. Chem Rev 112:3427–3481

    Article  CAS  Google Scholar 

  11. Wang L, Liu F, Sui N et al (2016) A colorimetric assay for Hg(II) based on the use of a magnetic aptamer and a hybridization chain reaction. Microchim Acta 183:2855–2860

    Article  CAS  Google Scholar 

  12. Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244–3245

    Article  CAS  Google Scholar 

  13. Srinivasan K, Subramanian K, Murugan K, Dinakaran K (2016) Sensitive fluorescence detection of mercury(II) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots. Analyst 141:6344–6352

    Article  CAS  Google Scholar 

  14. Zhang H, Yang L, Zhou B, Liu W, Ge J, Wu J, Wang Y, Wang P (2013) Ultrasensitive and selective gold film-based detection of mercury(II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosens Bioelectron 47:391–395

    Article  CAS  Google Scholar 

  15. Pelossof G, Tel-Vered R, Liu X, Willner I (2011) Amplified surface Plasmon resonance based DNA biosensors, Aptasensors, and Hg2+ sensors using Hemin/G-Quadruplexes and au nanoparticles. Chem Eur J 17:8904–8912

    Article  CAS  Google Scholar 

  16. Zhang H, Harpster MH, Park HJ et al (2010) Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles. Anal Chem 83:254–260

    Article  Google Scholar 

  17. Salimi A, Alizadeh V, Hallaj R (2006) Amperometric detection of ultra trace amounts of Hg(I) at the surface boron doped diamond electrode modified with iridium oxide. Talanta 68:1610–1616

    Article  CAS  Google Scholar 

  18. Mor-Piperberg G, Tel-Vered R, Elbaz J, Willner I (2010) Nanoengineered electrically contacted enzymes on DNA scaffolds: functional assemblies for the selective analysis of Hg2+ ions. J Am Chem Soc 132:6878–6879

    Article  CAS  Google Scholar 

  19. Tao L, Song C, Sun Y, Li X, Li Y, Jin B, Zhang Z, Yang K (2013) Analytica Chimica Acta a fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells. Anal Chim Acta 761:194–200. https://doi.org/10.1016/j.aca.2012.11.046

    Article  CAS  PubMed  Google Scholar 

  20. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205

    Article  CAS  Google Scholar 

  21. Huang J, Gao X, Jia J, Kim JK, Li Z (2014) Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal Chem 86:3209–3215

    Article  CAS  Google Scholar 

  22. Qu Z, Xu H, Xu P, Chen K, Mu R, Fu J, Gu H (2014) Ultrasensitive ELISA using enzyme-loaded nanospherical brushes as labels. Anal Chem 86:9367–9371

    Article  CAS  Google Scholar 

  23. Mani V, Wasalathanthri DP, Joshi AA et al (2012) Highly efficient binding of paramagnetic beads bioconjugated with 100 000 or more antibodies to protein-coated surfaces. Anal Chem 84:10485–10491

    Article  CAS  Google Scholar 

  24. Kim C, Searson PC (2017) Detection of Plasmodium lactate dehydrogenase antigen in buffer using Aptamer-modified magnetic microparticles for capture, oligonucleotide-modified quantum dots for detection, and oligonucleotide-modified Gold nanoparticles for signal amplification. Bioconjug Chem 28:2230–2234

    Article  CAS  Google Scholar 

  25. Chon H, Lee S, Yoon S-Y et al (2014) SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction. Chem Commun 50:1058–1060

    Article  CAS  Google Scholar 

  26. Salimi A, Rahmatpanah R, Hallaj R, Roushani M (2013) Covalent attachment of thionine onto gold electrode modified with cadmium sulfide nanoparticles: improvement of electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide. Electrochim Acta 95:60–70

    Article  CAS  Google Scholar 

  27. Zhang H, Ma X, Ji Y et al (2003) Single crystalline CdS nanorods fabricated by a novel hydrothermal method. Chem Phys Lett 377:654–657

    Article  CAS  Google Scholar 

  28. Liu S-J, Nie H-G, Jiang J-H, Shen GL, Yu RQ (2009) Electrochemical sensor for mercury (II) based on conformational switch mediated by interstrand cooperative coordination. Anal Chem 81:5724–5730

    Article  CAS  Google Scholar 

  29. Ma X, Wang Z, He S et al (2019) L-cysteine modified gold nanoparticles for tube-based fluorometric determination of mercury (II) ions. Microchim Acta 186:632

    Article  Google Scholar 

  30. Mao A, Wei C (2019) Cytosine-rich ssDNA-templated fluorescent silver and copper/silver nanoclusters: optical properties and sensitive detection for mercury (II). Microchim Acta 186:541

    Article  Google Scholar 

  31. Zhang Z, Zhang F, He P et al (2019) Fluorometric determination of mercury (II) by using thymine-thymine mismatches as recognition elements, toehold binding, and enzyme-assisted signal amplification. Microchim Acta 186:551

    Article  Google Scholar 

  32. Huang X, Hao Y, Wu H et al (2014) Magnetic beads based colorimetric detection of mercuric ion. Sensors Actuators B Chem 191:600–604

    Article  CAS  Google Scholar 

  33. Chen Y, Wu L, Chen Y et al (2012) Determination of mercury (II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim Acta 177:341–348

    Article  CAS  Google Scholar 

  34. Huang R-F, Liu H-X, Gai Q-Q, Liu GJ, Wei Z (2015) A facile and sensitive electrochemiluminescence biosensor for Hg2+ analysis based on a dual-function oligonucleotide probe. Biosens Bioelectron 71:194–199

    Article  CAS  Google Scholar 

  35. Liu F, Wang S, Zhang M et al (2014) Aptamer based test stripe for ultrasensitive detection of mercury (II) using a phenylene-ethynylene reagent on nanoporous silver as a chemiluminescence reagent. Microchim Acta 181:663–670

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Iranian Nanotechnology Initiative and the Research Office of the University of Kurdistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Hallaj.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, A., Hallaj, R., Bahar, S. et al. Indirect determination of mercury(II) by using magnetic nanoparticles, CdS quantum dots and mercury(II)-binding aptamers, and quantitation of released CdS by graphite furnace AAS. Microchim Acta 187, 91 (2020). https://doi.org/10.1007/s00604-019-4029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4029-x

Keywords

Navigation