Skip to main content

Advertisement

Log in

Effect of Ni on Surface Energy and Diffusion Creep of Solid Ag

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of nickel on surface energy of the solid/gas interface of silver was studied. The measurements were taken using foils according to the previously developed in situ method in an atmosphere of Ar + 10% H2 at high temperatures. This method simultaneously allows one to determine the surface energy and diffusion creep rate. The solubility of nickel in silver is very low, so the measurements were taken for the alloys in the two-phase region with 0.45 at.% Ni and 1.5 at.% Ni, as well as for pure nickel. Nickel is shown to significantly increase the surface energy of silver and slow down the diffusion creep rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Srivastava, S. Chithra, K.D. Malviya, S.K. Sinha, and K. Chattopadhyay, Size Dependent Microstructure for Ag-Ni Nanoparticles. Acta Mat. 59(16), 6501–6509 (2011)

    Article  CAS  Google Scholar 

  2. R. Meyer, S. Prakash, and P. Entel, Capillary Pressure and Phonons in Ag, Au, Cu and Ni Nanoparticles. Phase Trans. 75(1–2), 51–58 (2002)

    Article  CAS  Google Scholar 

  3. J. Zhong, L.H. Zhang, Z.H. Jin, M.L. Sui, and K. Lu, Superheating of Ag Nanoparticles Embedded in Ni Matrix. Acta Mat. 49, 2897–2904 (2001)

    Article  CAS  Google Scholar 

  4. Z. Zhao, A. Fisher, and D. Cheng, Phase Diagram and Segregation of Ag-Co Nanoalloys: Insights from Theory and Simulation. Nanotechnology 27, 115702-1–115702-11 (2016)

    Google Scholar 

  5. G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems with Nano-phases and Complexions. J. Mater. Sci. 47(24), 8320–8335 (2012)

    Article  CAS  Google Scholar 

  6. J. Bian, G. Wang, and X. Feng, Atomistic Calculations of Surface Energy of Spherical Copper Surfaces. Acta Mech. Solids Sin. 25, 557–561 (2012)

    Article  Google Scholar 

  7. D. Gozzi, M. Tomellini, L. Lazzarini, and A. Latini, High-Temperature Determination of Surface Free Energy of Copper Nanoparticles. J. Phys. Chem. C. 114, 12117–12124 (2010)

    Article  CAS  Google Scholar 

  8. L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer et al., Accurate Surface and Adsorption Energies from Many-Body Perturbation Theory. Nat. Mater. 9, 741–744 (2010)

    Article  CAS  Google Scholar 

  9. S. Zhevnenko and D. Vaganov, Isotherms of Grain Boundary Tension and Grain Boundary Adsorption In Cu-Sn System. Defect Diffus. Forum 258–260, 427–432 (2006)

    Google Scholar 

  10. D. Vaganov and S. Zhevnenko, Determination of Copper Self-diffusion Coefficients on the Base of High-Temperature Creep Data. Defect Diffus. Forum 249, 115–118 (2006)

    Article  CAS  Google Scholar 

  11. S.N. Zhevnenko and E.I. Gershman, Method of In Situ Measuring Surface Tension of a Solid–Gas Interface. Phys. Met. Metallogr. 110, 102–107 (2010)

    Article  Google Scholar 

  12. S.N. Zhevnenko, Isotherms of Surface Tension in Copper-Based Systems. Phys. Met. Metallogr. 106, 276–283 (2008)

    Article  Google Scholar 

  13. S. Zhevnenko and A.K. Khayrullin, Interfacial Free Energy and Viscosity of Cu(Ag) Solid Solutions. J. Phys. Chem. C 120, 14082–14087 (2016)

    Article  CAS  Google Scholar 

  14. S. Zhevnenko, Surface Free Energy of Copper-Based Solid Solutions. J. Phys. Chem. C 119, 2566–2571 (2015)

    Article  CAS  Google Scholar 

  15. X.J. Liu, F. Gao, C.P. Wang, and K. Ishida, Thermodynamic Assessments of the Ag-Ni Binary and Ag-Cu-Ni Ternary Systems. J. Electron. Mater. 37(2), 210–217 (2008)

    Article  Google Scholar 

  16. C. Herring, Diffusional Viscosity of a Polycrystalline Solid. J. Appl. Phys. 21, 437–445 (1950)

    Article  Google Scholar 

  17. R.L. Coble, A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. J. Appl. Phys. 34, 1679–1682 (1963)

    Article  Google Scholar 

  18. E. Arzt, M.F. Ashby, and R.A. Verrall, Interface Controlled Diffusional Creep. Acta Mat. 31(13), 1977–1989 (1983)

    Article  CAS  Google Scholar 

  19. S. Zhevnenko, Interfacial Free Energy of Cu-Co Solid Solutions. Metall. Mater. Trans. A 44(6), 2533–2538 (2013)

    Article  CAS  Google Scholar 

  20. H. Udin, Surface Tension of Solid Copper. Doctor thesis (Massachusetts Institute of Technology, 1940).

  21. S.N. Zhevnenko, Direct Measurements of Surface Free Energy of Solid Solutions: Phase Transitions and Complexions. Top Catal. 61(15–17), 1707–1715 (2018)

    Article  CAS  Google Scholar 

  22. A.V. Ruban, H.L. Skriver, and J.K. Norskov, Surface Segregation Energies in Transition-Metal Alloys. Phys. Rev. B 59(24), 15990–16000 (1999)

    Article  Google Scholar 

  23. B. Burton, Interface Reaction Controlled Diffusional Creep: A Consideration of Grain Boundary Dislocation Climb Sources. Mater. Sci. Eng. 10, 9–14 (1972)

    Article  CAS  Google Scholar 

  24. B. Burton, Diffusional Creep of Polycrystalline Materials (Trans. Tech. Publications, Zurich, 1977)

    Book  Google Scholar 

  25. M. Magri, G. Lemoine, L. Adam, and J. Segurado, A Coupled Model of Diffusional Creep of Polycrystalline Solids Based on Climb of Dislocations at Grain Boundaries. J. Mech. Phys. Solids, 135, 103786–20 (2020)

  26. B.Q. Han, and D.C. Dunand, Creep of Magnesium Strengthened with High Volume Fractions of Yttria Dispersoids. Mater. Sci. Eng. A 300, 235–244 (2001)

    Article  Google Scholar 

  27. B. Burton, On the Mechanism of the Inhibition of Diffusional Creep by Second Phase Particles. Mater. Sci. Eng. 11, 337–343 (1973)

    Article  CAS  Google Scholar 

  28. E.A. Clark, R. Yeske, and H.K. Birnbaum, The Effect of Hydrogen on the Surface Energy of Nickel. Metall. Mater. Trans. A 11A, 1903–1908 (1980)

    Article  CAS  Google Scholar 

  29. T.A. Roth, The Surface and Grain Boundary Energies of Iron, Cobalt and Nickel. Mater. Sci. Eng. 18, 183–192 (1975)

    Article  CAS  Google Scholar 

  30. R.M. Digilov, S.N. Zadumkin, V.K. Kumykov, and KhB Khokonov, Measurement of Surface Tension of Refractory Metals in Solid State. Phys. Met. Metallogr. 41(5), 979–982 (1976)

    CAS  Google Scholar 

  31. L.E. Murr, O.T. Inal, and G.I. Wong, Electron Microscopy and the Structure of Metals, G. Thomas, ed. (University of California Press, Berkeley, 1972), p. 471.

  32. T.M. Williams, and P. Barrand, The Measurement of the Ratio of Grain-Boundary Energy to Surface Energy as a Function of Composition, for the Copper–Nickel System. J. Inst. Met. 93, 447–452 (1965)

    CAS  Google Scholar 

  33. E.R. Hayward and A.P. Greenough, The Surface Energy of Solid Nickel. J. Inst. Met. 88, 217–221 (1959)

    Google Scholar 

  34. P.S. Maiya and J.M. Blakely, Surface Self-diffusion and Surface Energy of Nickel. J. Appl. Phys. 38, 698–704 (1967)

    Article  CAS  Google Scholar 

  35. F.H. Buttner, E.R. Funk, and H. Udin, Adsorption of Oxygen on Silver. J. Phys. Chem. 56, 657–660 (1952)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reported study was supported by the Russian Foundation for Basic Research in the study of measuring surface energy (Project No. 18-02-00752) and the Russian Science Foundation in the study of diffusion creep and surface morphology (Project No. 19-72-10160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Zhevnenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhevnenko, S.N., Dmitrieva, I.O. & Antonova, V.E. Effect of Ni on Surface Energy and Diffusion Creep of Solid Ag. J. of Materi Eng and Perform 29, 4833–4839 (2020). https://doi.org/10.1007/s11665-019-04529-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04529-7

Keywords

Navigation