Skip to main content
Log in

Fabrication and High-Temperature Compressive Behavior of Unique Multi-Sheet Stacked Block Ni–Cr–Al Metallic Foam

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Large unique block Ni–Cr–Al superalloy foam was fabricated using a combination method of powder-alloying, multi-sheet stacking, and hot compression processes. Subsequently, the compressive properties and deformation behaviors of multi-sheet stacked block metallic foam were investigated from room temperature to 1073 K. The analysis of the resulting structural characteristics of the block foam showed that the interfaces between the sheets have complex strut interactions, such as contacted (deformed) and intersected struts. The relative density was measured as 2.93% for sheet foam and 4.90% for block foam. The compressive deformation of sheet and block Ni–Cr–Al foams showed the typical compressive stress–strain curves of plastically deformable metallic foams regardless of foam type. However, different deformation behaviors in the plateau regions were detected based on the type of foam. It is noteworthy that the yield strength of block foam showed a relatively lower value than that of sheet foam, even though the block foam had higher relative density. The existence of unique interfaces in the multi-sheet stacked block foam may have affected strength and plastic deformation. Finally, distinct compressive behaviors related to the structural and microstructural characteristics of block Ni–Cr–Al foam are discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge University Press, Cambridge, 1997), pp. 6–11

    Book  Google Scholar 

  2. T.J. Lu, H.A. Stone, M.F. Ashby, Acta Mater. 46, 3619–3635 (1998)

    Article  CAS  Google Scholar 

  3. T.J. Lu, Int. J. Heat Mass Transf. 42, 2031–2040 (1999)

    Article  CAS  Google Scholar 

  4. J. Banhart, Prog. Mater Sci. 46, 559–632 (2001)

    Article  CAS  Google Scholar 

  5. G.J. Davies, S. Zhen, J. Mater. Sci. 18, 1899–1911 (1983)

    Article  CAS  Google Scholar 

  6. M. Nishi, M. Oshita, M. Ulbin, M. Vesenjak, Z. Ren, K. Hokamoto, Met. Mater. Int. 24, 1143–1148 (2018)

    Article  CAS  Google Scholar 

  7. R.A. Steven, P.E.J. Flewitt, Mater. Sci. Eng. 14, 81–88 (1980)

    Google Scholar 

  8. G.H. Gessinger, Powder Metallurgy of Superalloys (Butterworth & Co., London, 1984), pp. 3–16

    Book  Google Scholar 

  9. B.C. Wu, E. Chang, C.H. Chao, J. Mater. Sci. 25, 1112–1119 (1990)

    Article  CAS  Google Scholar 

  10. H. Herman, N.R. Shanker, Mater. Sci. Eng. 88, 69–74 (1987)

    Article  CAS  Google Scholar 

  11. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide (Butterworth & Co, Oxford, 2000), pp. 6–23

    Google Scholar 

  12. H.N.G. Wadley, Cellular Metals and Metal Foaming Technology (Verlag MIT, Berlin, 2001)

    Google Scholar 

  13. D.T. Queheillalt, Y. Katsumura, H.N.G. Wadley, J. Mater. Res. 16, 1028–1036 (2001)

    Article  CAS  Google Scholar 

  14. Y. Boonyongmaneerat, D.C. Dunand, Adv. Eng. Mater. 10, 379–383 (2008)

    Article  CAS  Google Scholar 

  15. S. Ochiai, S. Nakano, Y. Fukazawa, M.S. Aly, H. Okuda, K. Kato, T. Isobe, K. Kita, K. Honma, Mater. Trans. 5, 925–932 (2010)

    Article  Google Scholar 

  16. O. Smorygo, V. Mikutski, A. Leonov, A. Marukovich, Y. Vialiuha, Scr. Mater. 58, 910–913 (2008)

    Article  CAS  Google Scholar 

  17. D.T. Queheillalt, Y. Katsumura, H.N.G. Wadley, Scr. Mater. 50, 313–317 (2004)

    Article  CAS  Google Scholar 

  18. K.A. Khor, L.G. Yu, O. Andersen, G. Stephani, Mater. Sci. Eng. A 356, 130–135 (2003)

    Article  Google Scholar 

  19. Y.-J. Yi, M.-J. Lee, J.-Y. Yun, B.-K. Kim, Met. Mater. Int. 25, 1272–1277 (2019)

    Article  CAS  Google Scholar 

  20. H. Choe, D.C. Dunand, Acta Mater. 52, 1283–1295 (2004)

    Article  CAS  Google Scholar 

  21. Q. Pang, G.H. Wu, Z.Y. Xiu, G.Q. Chen, D.L. Sun, Mater. Sci. Eng. A 534, 699–706 (2012)

    Article  CAS  Google Scholar 

  22. Q. Pang, G.H. Wu, Z.Y. Xiu, L.T. Jiang, D.L. Sun, Mater. Charact. 70, 125–136 (2012)

    Article  CAS  Google Scholar 

  23. Q. Pang, Z.Y. Xiu, G.H. Wu, L.T. Jiang, D.L. Sun, Z.L. Hu, J. Mater, J. Mater. Process. Technol. 212, 2219–2227 (2012)

    Article  CAS  Google Scholar 

  24. E.W. Andrews, L.J. Gibson, M.F. Ashby, Acta Mater. 47, 2853–2863 (1999)

    Article  CAS  Google Scholar 

  25. A.M. Hodge, D.C. Dunand, Metall. Mater. Trans. A 34, 2353–2363 (2003)

    Article  Google Scholar 

  26. H.S. Zurob, Y. Brechet, J. Mater. Sci. 40, 5893–5901 (2004)

    Article  Google Scholar 

  27. Y. Booyongmaneerat, D.C. Dunand, Acta Mater. 57, 1373–1384 (2009)

    Article  Google Scholar 

  28. J. Choi, K. Kim, J. Korean Powder Metall. Inst. 17, 489–493 (2010)

    Article  Google Scholar 

  29. J.R. Davis, Nickel, Cobalt, and Their Alloys, ASM Specialty Handbook (ASM International, Cleveland, 2000)

    Google Scholar 

  30. W.F. Smith, Structure and Properties of Engineering Alloys, 2nd edn. (McGraw-Hill, New York, 1981), p. 495

    Google Scholar 

  31. L.Y. Sheng, J.T. Guo, H.Q. Ye, Mater. Des. 30, 964–969 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the strategic core material program funded by the Ministry of Trade, Industry, and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee-Ahn Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KS., Kang, TH., Park, MH. et al. Fabrication and High-Temperature Compressive Behavior of Unique Multi-Sheet Stacked Block Ni–Cr–Al Metallic Foam. Met. Mater. Int. 27, 1138–1146 (2021). https://doi.org/10.1007/s12540-019-00571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00571-1

Keywords

Navigation