Skip to main content
Log in

A Density Functional Study on the Sensitivity of Small ZnO Nanoclusters to Sulfamethazine Considering Semilocal and Nonlocal Functionals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the possible application of small ZnO nanoclusters in the development of biosensors was investigated by density functional theory. Sulfamethazine is an antibiotic compound with an extensive range of prophylactic and therapeutic applications in animal husbandry. Because of the environmental risks associated with the overconsumption of antibiotics, the development of precise and selective detection methods is imperative. In this regard, the interaction of sulfamethazine and ZnO nanoclusters was investigated utilizing the semilocal functional of Perdew, Burke, and Ernzerhof and nonlocal functional developed by Vydrov and Voorhis. The results showed that the antibiotic can be adsorbed on ZnO nanoclusters. By considering van der Waals interactions, an increase was observed in adsorption energy when compared with the semilocal functional. Inclusion of van der Waals forces, however, did not alter the spatial configuration of the adsorbed molecule. The imaginary part of the dielectric function of ZnO nanoclusters was reduced upon antibiotic adsorption, which became more pronounced in the case of larger ZnO nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Popp, K. Peto, and J. Nagy, Agron Sustain. Dev. 33, 243 (2013).

    Article  Google Scholar 

  2. M. Aziz and S. Karboune, Crit. Rev. Food Sci. Nutr. 58, 1 (2016).

    Article  Google Scholar 

  3. N.A. Mungroo and S. Neethirajan, Biosensors 4, 472 (2014).

    Article  Google Scholar 

  4. K.-W. Chen, G.-L. Chen, and C.-C. Hong, J. Electrochem. Soc. 163, B200 (2016).

    Article  CAS  Google Scholar 

  5. A. Kling, C. Chatelle, L. Armbrecht, E. Qelibari, J. Kieninger, C. Dincer, W. Weber, and G. Urban, Anal. Chem. 88, 10036 (2016).

    Article  CAS  Google Scholar 

  6. L. Lan, Y. Yao, J. Ping, and Y. Ying, Biosens. Bioelectron. 91, 504 (2017).

    Article  CAS  Google Scholar 

  7. T. Chen, G. Cheng, S. Ahmed, Y. Wang, X. Wang, H. Hao, and Z. Yuan, Talanta 175, 435 (2017).

    Article  CAS  Google Scholar 

  8. H. Yockell-Lelièvre, N. Bukar, J.L. Toulouse, J.N. Pelletier, and J.-F. Masson, Analyst 141, 697 (2016).

    Article  Google Scholar 

  9. K.S. McKeating, A. Aubé, and J.-F. Masson, Analyst 141, 429 (2016).

    Article  CAS  Google Scholar 

  10. M. Chen, T.P. Straatsma, Z. Fang, and D.A. Dixon, J. Phys. Chem. C 120, 20400 (2016).

    Article  CAS  Google Scholar 

  11. L.M. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp, and K. Dreisewerd, Appl. Phys. A: Mater. Sci. Process. 78, 641 (2004).

    Article  CAS  Google Scholar 

  12. A. Dmytruk, I. Dmitruk, I. Blonskyy, R. Belosludov, Y. Kawazoe, and A. Kasuya, Microelectron. J. 40, 218 (2009).

    Article  CAS  Google Scholar 

  13. S. Zhang, Y. Zhang, S. Huang, H. Liu, P. Wang, and H. Tian, J. Mater. Chem. 21, 16905 (2011).

    Article  CAS  Google Scholar 

  14. M. Zhao, Y. Xia, Z. Tan, X. Liu, and L. Mei, Phys. Lett. A 372, 39 (2007).

    Article  CAS  Google Scholar 

  15. A.C. Reber, S.N. Khanna, J.S. Hunjan, and M.R. Beltran, Eur. Phys. J. D 43, 221 (2007).

    Article  CAS  Google Scholar 

  16. B.L. Wang, X.Q. Wang, G.B. Chen, S. Nagase, and J.J. Zhao, J. Chem. Phys. 128, 144710 (2008).

    Article  Google Scholar 

  17. B. Wang, S. Nagase, J. Zhao, and G. Wang, J. Phys. Chem. C 111, 4956 (2007).

    Article  CAS  Google Scholar 

  18. J.M. Matxain, J.M. Mercero, J.E. Fowler, and J.M. Ugalde, J. Am. Chem. Soc. 125, 9494 (2003).

    Article  CAS  Google Scholar 

  19. Z. Zhao, W. Lei, X. Zhang, B. Wang, and H. Jiang, Sensors 10, 1216 (2010).

    Article  CAS  Google Scholar 

  20. Z.R.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, and M.J. Mcdermott, J. Am. Chem. Soc. 124, 12954 (2002).

    Article  CAS  Google Scholar 

  21. P.S. Maddahi, N. Shahtahmassebi, M. Rezaee Roknabadi, and F. Moosavi, Phys. Lett. A 380, 2090 (2016).

    Article  CAS  Google Scholar 

  22. P.S. Maddahi, N. Shahtahmassebi, M. Rezaee Roknabadi, and F. Moosavi, Comput. Theor. Chem. 1086, 36 (2016).

    Article  CAS  Google Scholar 

  23. F. Buonocore, C. Arcangeli, F. Gala, G. Zollo, and M. Celino, J. Phys. Chem. B 119, 11791 (2015).

    Article  CAS  Google Scholar 

  24. S. Saha and P. Sarkar, Phys. Chem. Chem. Phys. 16, 15355 (2014).

    Article  CAS  Google Scholar 

  25. F.F. Monteiro, D.L. Azevedo, E.C. da Silva, L.A. Ribeiro, and A.L. de Almeida Fonseca, Chem. Phys. Lett. 636, 62 (2015).

    Article  CAS  Google Scholar 

  26. P.S. Maddahi, M. Yeganeh, and F. Badieian Baghsiyahi, Mater. Chem. Phys. 237, 121857 (2019).

    Article  CAS  Google Scholar 

  27. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, and P. Ordejon, J. Phys. Condens. Matter 14, 2745 (2001).

    Article  Google Scholar 

  28. A. Lozano, B. Escribano, E. Akhmatskaya, and J. Carrasco, Phys. Chem. Chem. Phys. 19, 10133 (2017).

    Article  CAS  Google Scholar 

  29. K. Berland, V.R. Cooper, K. Lee, E. Schroder, T. Thonhauser, P. Hyldgaard, and B.I. Lundqvist, Rep. Prog. Phys. 78, 066501 (2015).

    Article  Google Scholar 

  30. O.A. Vydrov and T.V. Voorhis, J. Chem. Phys. 133, 244103 (2010).

    Article  Google Scholar 

  31. O.A. Vydrov and T.V. Voorhis, J. Chem. Theory Comput. 8, 1929 (2012).

    Article  CAS  Google Scholar 

  32. F. Tran and J. Hutter, J. Chem. Phys. 138, 204103 (2013).

    Article  Google Scholar 

  33. W. Hujo and S. Grimme, J. Chem. Theory Comput. 7, 3866 (2011).

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  35. N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1990).

    Article  Google Scholar 

  36. N. Troullier and J.L. Martins, Solid State Commun. 74, 613 (1990).

    Article  Google Scholar 

  37. D. Sanchez-Portal, E. Artacho, and J.M. Soler, J. Phys.: Condens. Matter 8, 3859 (1996).

    CAS  Google Scholar 

  38. R. Tayebee, A. Hosseini-nasr, N. Zamand, and B. Maleki, Polyhedron 102, 503 (2015).

    Article  CAS  Google Scholar 

  39. M.K. Yadav, M. Ghosh, R. Biswas, A.K. Raychaudhuri, A. Mookerjee, and S. Datta, Phys. Rev. B 76, 195450 (2007).

    Article  Google Scholar 

  40. P.O. Bedolla, G. Feldbauer, M. Wolloch, S.J. Eder, N. Dörr, P. Mohn, J. Redinger, and A. Vernes, J. Phys. Chem. C 118, 17608 (2014).

    Article  CAS  Google Scholar 

  41. M. Yeganeh and F. Badieian Baghsiyahi, J. Phys. Chem. Solids 124, 235 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yeganeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganeh, M., Maddahi, P.S. & Baghsiyahi, F.B. A Density Functional Study on the Sensitivity of Small ZnO Nanoclusters to Sulfamethazine Considering Semilocal and Nonlocal Functionals. J. Electron. Mater. 49, 1273–1281 (2020). https://doi.org/10.1007/s11664-019-07757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07757-8

Keywords

Navigation