Skip to main content
Log in

Design of a Tunable Polarization-Insensitive Absorber for L and S Bands Using Active Frequency-Selective Surface

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A tunable polarization-insensitive absorber based on an active frequency-selective surface is proposed for electromagnetic (EM) wave absorption in the L and S bands. The frequency-selective surface consists of a diamond-shaped loop that is interconnected by varactor diodes. The proposed design is significant because of its inclusion of wideband tuning and its ability to easily change from single-band tunable absorption to dual-band absorption. The simulation results demonstrate that the absorption response (> 80%) can vary from 1.62 GHz to 3.66 GHz under the reverse bias voltage, thus creating a tunable range of 125.9%. The absorption region (> 90%) spans from 1.86 GHz to 3.31 GHz and generates a 78% tunable range. The single-band tunable absorber is characterised by an equivalent circuit model to obtain the circuit parameters and predict the absorption frequency. Furthermore, a dual-band absorbing structure is obtained by adding a metasurface directly to the single-layer structure, which can easily be changed from single-band absorption to dual-band absorption by separately controlling the bias voltages of the upper and lower unit cells. The two fabricated prototypes were measured using free-space technology, and the experimental results closely mirror the simulation results. Results show that the proposed structure achieves the dynamic control of EM wave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.M.A.M.H. Abadi, K. Ghaemi, and N. Behdad, IEEE Trans. Antennas Propag. 63, 534 (2016).

    Article  Google Scholar 

  2. S.M.A.M.H. Abadi and N. Behdad, IEEE Trans. Antennas Propag. 62, 5557 (2014).

    Article  Google Scholar 

  3. X.Q. Yang, D. Zhang, S.Y. Wu, Y. Yin, L.S. Li, K.Y. Cao, and K.M. Huang, Sci. Rep. 7, 3190 (2017).

    Article  Google Scholar 

  4. X.L. Bao, G. Ruvio, M.J. Ammann, and M. John, IEEE Antennas Wirel. Propag. Lett. 5, 323 (2006).

    Article  Google Scholar 

  5. S. Ghosh and K.V. Srivastava, I.E.E.E. Trans. Electromagn. Compat. 60, 166 (2017).

    Article  Google Scholar 

  6. R. Sivasamy, B. Moorthy, M. Kanagasabai, V.R. Samsingh, and M. Gulam Nabi Alsath, IEEE Trans. Electromagn. Compat. 60, 280 (2017).

    Article  Google Scholar 

  7. T.W. Deng, Z.W. Li, Z.N. Chen, and N. Zhi, IEEE Trans. Antennas Propag. 65, 5886 (2017).

    Article  Google Scholar 

  8. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, IEEE Antennas Wirel. Propag. Lett. 13, 27 (2014).

    Article  Google Scholar 

  9. Y.J. Yoo, H.Y. Zheng, Y.J. Kim, J.Y. Rhee, J.H. Kang, K.W. Kim, H. Cheong, Y.H. Kim, and Y.P. Lee, Appl. Phys. Lett. 105, 041902 (2014).

    Article  Google Scholar 

  10. M. Karaaslan, M. Bağmancı, E. Ünal, O. Akgol, and C. Sabah, Opt. Commun. 392, 31 (2017).

    Article  CAS  Google Scholar 

  11. H.T. Zhong, X.X. Yang, C. Tan, and K. Yu, Appl. Phys. Lett. 109, 253904 (2016).

    Article  Google Scholar 

  12. B.X. Khuyen, B.S. Tung, Y.J. Yoo, Y.J. Kim, K.W. Kim, L.Y. Chen, V.D. Lam, and Y. Lee, Sci. Rep. 7, 45151 (2017).

    Article  CAS  Google Scholar 

  13. F.L. Zhang, S.Q. Feng, K.P. Qiu, Z.J. Liu, Y.C. Fan, W.H. Zhang, Q. Zhao, and J. Zhou, Appl. Phys. Lett. 106, 091907 (2015).

    Article  Google Scholar 

  14. Y. Pang, J. Wang, Q. Cheng, S. Xia, X.Y. Zhou, Z. Xu, T.J. Cui, and S. Qu, Appl. Phys. Lett. 110, 104103 (2017).

    Article  Google Scholar 

  15. Y. Shen, J. Zhang, Y. Pang, L. Zheng, J. Wang, H. Ma, and S. Qu, Sci. Rep. 8, 4423 (2018).

    Article  Google Scholar 

  16. G.S. Deng, P. Chen, J. Yang, Z.P. Yin, and L.Z. Qiu, Opt. Commun. 380, 101 (2016).

    Article  CAS  Google Scholar 

  17. E. Torabi, A. Yahaghi, in 2016 24th Iranian Conference on Electrical Engineering (ICEE) (IEEE, 2016), p. 946.

  18. D. Shrekenhamer, W.C. Chen, and W.J. Padilla, Phys. Rev. Lett. 110, 177403 (2013).

    Article  Google Scholar 

  19. Skyworks Solutions, Inc., “Skywork data sheet,”. http://www.skyworksinc.com/.. Accessed 14 Oct 2018

  20. ‘DATA SHEET • SMV2201-SMV2205 Series: Surface Mount Hyperabrupt Tuning Varactor Diodes’. http://www.skyworksinc.com/uploads/documents/201953A.pdf. Accessed 27 Nov 2017.

  21. H. Yuan, B.O. Zhu, and Y. Feng, J. Appl. Phys. 117, 173103 (2015).

    Article  Google Scholar 

  22. J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2nd ed. (New York: Wiley, 2001).

    Book  Google Scholar 

  23. S. Ghosh and K.V. Srivastava, IEEE Antennas Wirel. Propag. Lett. 14, 511 (2015).

    Article  Google Scholar 

  24. S.N. An, H.B. Xu, Y.L. Zhang, S. Wu, J.J. Jiang, Y. He, and L. Miao, J. Appl. Phys. 122, 2342 (2017).

    Google Scholar 

  25. Y. He, J.J. Jiang, M. Chen, S.C. Li, L. Miao, and S.W. Bie, J. Appl. Phys. 119, 105103 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11572248), Department of Science and Technology of Sichuan Province (No. 19ZDYF0024) and Open Project of Key Laboratory of Testing Technology for Manufacturing Process, (Southwest University of Science and Technology), Ministry of Education (No. 18kfzk03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Chen, H., Luo, J. et al. Design of a Tunable Polarization-Insensitive Absorber for L and S Bands Using Active Frequency-Selective Surface. J. Electron. Mater. 49, 1173–1183 (2020). https://doi.org/10.1007/s11664-019-07807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07807-1

Keywords

Navigation