Skip to main content
Log in

3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present article, three-dimensional size dependent thermal analysis of three-layered nanoplate with porous graded core and two piezomagnetic face-sheets is studied based on nonlocal strain gradient theory considering thickness stretching effect. The sandwich nanoplate standing on an elastic foundation and face layers are exposed to electric/magnetic potentials. Porosity is evenly and unevenly repartitioned thorough thickness of the core. To predict both reduction and enhancement of stiffness in small scales, a nonlocal parameter and a strain gradient parameter is used for analysis. The governing equations are derived using the principle of virtual works based on sinusoidal shear and normal deformation theory. The small size effect is obtained exploiting Eringen’s nonlocal elasticity theory. The influences of the porosity coefficient, temperature parameters, electric/magnetic potential, boundary conditions (simply supported and clamped) and parameters of foundation on bending, electrical, and magnetic behaviors of the sandwich nanoplate are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Gupta, M. Talha, Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. Int. J. Struct. Stab. Dyn. 18, 1850013 (2018)

    MathSciNet  Google Scholar 

  2. D. Shahsavari, M. Shahsavari, L. Li, B. Karami, A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp. Sci. Technol. 72, 134–149 (2018)

    Google Scholar 

  3. A. Gupta, M. Talha, Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1–14 (2015)

    Google Scholar 

  4. D. Chen, J. Yang, S. Kitipornchai, Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)

    Google Scholar 

  5. D. Chen, J. Yang, S. Kitipornchai, Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108, 14–22 (2016)

    Google Scholar 

  6. S. Subra, A. Mortensen, Fundamentals of Functionally Graded Materials (IOM Communications Ltd., London, 1998)

    Google Scholar 

  7. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53, 1143–1165 (2015)

    Google Scholar 

  8. E. Magnucka-Blandzi, Axi-symmetrical deflection and buckling of circular porous-cellular plate. Thin Wall Struct. 46, 333–337 (2008)

    Google Scholar 

  9. M.H. Shojaeefard, H.S. Googarchin, M. Mahinzare, M. Adibi, Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media. J. Intell. Mater. Syst. Struct. 29, 2344–2361 (2018)

    Google Scholar 

  10. F. Ebrahimi, E. Salari, Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams. Smart Mater. Struct. 24(12), 125007 (2015)

    ADS  Google Scholar 

  11. F. Ebrahimi, M.R. Barati, Dynamic modeling of magneto-electrically actuated compositionally graded nanosize plates lying on elastic foundation. Arab. J. Sci. Eng. 42, 1977–1997 (2017)

    MathSciNet  MATH  Google Scholar 

  12. D. Shahsavari, B. Karami, L. Li, A high-order gradient model for wave propagation analysis of porous FG nanoplates. Steel Compos. Struct. 29, 53–66 (2018)

    Google Scholar 

  13. M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech. Res. Commun. 39, 23–27 (2012)

    MATH  Google Scholar 

  14. A. Ghorbanpour Arani, M.H. Zamani, Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica Aerogel foundation. J. Sandw. Struct. Mater. (2017). https://doi.org/10.1177/1099636217721405

    Article  Google Scholar 

  15. A.C. Eringen, C.G. Speziale, B.S. Kim, Crack-tip problem in non-local elasticity. J. Mech. Phys. Solids 25, 339–355 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  16. A.C. Eringen, Line crack subjected to anti-plane shear. Eng. Fract. Mech. 12, 211–219 (1979)

    Google Scholar 

  17. R.D. Mindlin, Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MATH  Google Scholar 

  18. R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Google Scholar 

  19. R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    MATH  Google Scholar 

  20. C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013)

    Google Scholar 

  21. A. Mohammed, A.M. Zenkour, A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment. J. Sandw. Struct. Mater. 18, 624–651 (2016)

    Google Scholar 

  22. A. Mojahedin, M. Jabbari, A.R. Khorshidvand, M.R. Eslami, Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory. Thin Wall Struct. 99, 83–90 (2016)

    Google Scholar 

  23. L.S. Ma, T.J. Wang, Axisymmetric post-buckling of a functionally graded circular plate subjected to uniformly distributed radial compression. Mater. Sci. Forum 423–425, 719–724 (2003)

    Google Scholar 

  24. L.S. Ma, T.J. Wang, Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. Int. J. Solids Struct. 40, 3311–3330 (2003)

    MATH  Google Scholar 

  25. L.S. Ma, T.J. Wang, Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions for isotropic circular plates. Int. J. Solids Struct. 41, 85–101 (2004)

    MATH  Google Scholar 

  26. A. Mohammad, A.M. Zenkour, Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin–Voigt viscoelastic nanoplate and two piezoelectric layers. Acta Mech. 228, 475–493 (2017)

    MathSciNet  MATH  Google Scholar 

  27. R. Ansari, R. Gholami, M.F. Faghih Shojaei, V. Mohammadi, M.A. Darabi, Thermal buckling analysis of a mindlin rectangular FGM microplate based on the strain gradient theory. J. Therm. Stresses 36, 446–465 (2013)

    Google Scholar 

  28. A.R. Khorshidvand, M. Jabbari, M.R. Eslami, Thermoelastic buckling analysis of functionally graded circular plates integrated with piezoelectric layers. J. Therm. Stresses 35, 695–717 (2012)

    Google Scholar 

  29. S.S. Mirjavadi, B.M. Afshari, M.R. Barati, A.M.S. Hamouda, Transient response of porous FG nanoplates subjected to various pulse loads based on nonlocal stress-strain gradient theory. Eur. J. Mech. A Solids 74, 210–220 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  30. M.R. Barati, Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity. Acta Mech. 229, 1183–1196 (2018)

    MathSciNet  MATH  Google Scholar 

  31. P. Phung-Van, H.C. Thai, H. Nguyen-Xuan, M.A. Wahab, Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Compos. Part B Eng. 164, 215–225 (2019)

    Google Scholar 

  32. A.M. Zenkour, Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch. Appl. Mech. 77, 197–214 (2007)

    ADS  MATH  Google Scholar 

  33. M. Sobhy, Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct. 99, 76–87 (2013)

    ADS  Google Scholar 

  34. F. Cornacchia, N. Fantuzzi, R. Luciano, R. Penna, Solution for cross- and angle-ply laminated Kirchhoff nano plates in bending using strain gradient theory. Compos. Part B Eng. 173, 107006 (2019)

    Google Scholar 

  35. R. Barretta, L. Feo, R. Luciano, F.M. de Sciarra, A gradient Eringen model for functionally graded nanorods. Compos. Struct. 131, 11 (2015)

    Google Scholar 

  36. L. Leonetti, N. Fantuzzi, P. Trovalusci, F. Tornabene, Scale effects in orthotropic composite assemblies as micropolar continua: a comparison between weak and strong-form finite element solutions. Materials 12, 758 (2019)

    ADS  Google Scholar 

  37. B. Akgoz, O. Civalek, Effects of thermal and shear deformation on vibration response of functionally graded thick composite micro beams. Compos. Part B Eng. 129, 77–87 (2017)

    Google Scholar 

  38. B. Akgoz, O. Civalek, Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. J. Comput. Theor. Nanosci 8, 1821–1827 (2011)

    MATH  Google Scholar 

  39. A. Mohammad, M. Kiani, T. Rabczuk, Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Compos. Part B Eng. 168, 320–333 (2019)

    Google Scholar 

  40. S. Sahmani, R. Ansari, On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Compos. Struct. 95, 430–442 (2013)

    Google Scholar 

  41. E. Farzad, A. Dabbagh, On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Compos. Struct. 162, 281–293 (2017)

    Google Scholar 

  42. A.M. Zenkour, M. Sobhy, A simplified shear and normal deformations nonlocal theory for bending of nanobeams in thermal environment. Physica E Low Dimens. Syst. Nanostruct. 70, 121–128 (2015)

    ADS  Google Scholar 

  43. M.H. Jalaei, H.T. Thai, Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Compos. Part B Eng. 175, 107164 (2019)

    Google Scholar 

  44. A.G. Arani, Z.K. Maraghi, H.K. Arani, Orthotropic patterns of Pasternak foundation in smart vibration analysis of magnetostrictive nanoplate. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230, 559–572 (2016)

    Google Scholar 

  45. M. Malikan, V.B. Nguyen, F. Tornabene, Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory. Mater. Res. Express 5, 075031 (2018)

    ADS  Google Scholar 

  46. H.T. Thai, D.H. Choi, Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013)

    Google Scholar 

  47. I. Mechab, B. Mechab, S. Benaissa, B. Serier, B.B. Bouiadjra, Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories. J. Braz. Soc. Mech. Sci. Eng. 38, 2193–2211 (2016)

    Google Scholar 

  48. L. Li, Y. Hu, X. Li, Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int. J. Mech. Sci. 115, 135–144 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Civalek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ K_{11} = \pi^{2} \left( {\frac{{A_{66} }}{{b^{2} }} + \frac{{A_{11} }}{{a^{2} }}} \right) + \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{A_{11} }}{{a^{2} }} + \frac{{A_{66} }}{{b^{2} }}} \right), $$
$$ K_{12} = \frac{{\pi^{2} }}{ab}(A_{66} + A_{12} ) + \frac{{\lambda \pi^{4} }}{ab}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)(A_{12} + A_{66} ), $$
$$ K_{13} = - \frac{{\pi^{3} }}{{a^{3} }}B_{11} - \frac{{\pi^{3} }}{{ab^{2} }}\left( {2B_{66} + B_{12} } \right) - \frac{{\lambda \pi^{5} }}{a}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{B_{11} }}{{a^{2} }} + \frac{{B_{12} }}{{b^{2} }} + 2\frac{{B_{66} }}{{b^{2} }}} \right), $$
$$ K_{14} = \pi^{2} \left( {\frac{{H_{11} }}{{a^{2} }} + \frac{{H_{66} }}{{b^{2} }}} \right) + \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{H_{11} }}{{a^{2} }} + \frac{{H_{66} }}{{b^{2} }}} \right), $$
$$ K_{15} = \frac{{\pi^{2} }}{ab}\left( {H_{12} + H_{66} } \right) + \frac{{\lambda \pi^{4} }}{ab}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {H_{12} + H_{66} } \right), $$
$$ K_{16} = \left( {\frac{\pi }{a} + \frac{{\lambda \pi^{3} }}{{ab^{2} }} + \frac{{\lambda \pi^{3} }}{{a^{3} }}} \right)A_{13} , $$
$$ K_{17} = \left( {\frac{\pi }{a} + \frac{{\lambda \pi^{3} }}{{ab^{2} }} + \frac{{\lambda \pi^{3} }}{{a^{3} }}} \right)E_{31} , $$
$$ K_{18} = \left( {\frac{\pi }{a} + \frac{{\lambda \pi^{3} }}{{ab^{2} }} + \frac{{\lambda \pi^{3} }}{{a^{3} }}} \right)\beta_{31} , $$
$$ K_{22} = \pi^{2} \left( {\frac{{A_{22} }}{{b^{2} }} + \frac{{A_{66} }}{{a^{2} }}} \right) + \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{A_{22} }}{{b^{2} }} + \frac{{A_{66} }}{{a^{2} }}} \right), $$
$$ K_{23} = \frac{{\pi^{3} }}{{b^{3} }}B_{22} + \frac{{\pi^{3} }}{{a^{2} b}}\left( {2B_{66} + B_{12} } \right) + \frac{{\lambda \pi^{5} }}{b}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{B_{22} }}{{b^{2} }} + \frac{{B_{12} }}{{a^{2} }} + 2\frac{{B_{66} }}{{a^{2} }}} \right), $$
$$ K_{24} = \frac{{\pi^{2} }}{ab}\left( {H_{12} + H_{66} } \right) + \frac{{\lambda \pi^{4} }}{ab}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {H_{12} + H_{66} } \right), $$
$$ K_{25} = \pi^{2} \left( {\frac{{H_{22} }}{{b^{2} }} + \frac{{H_{66} }}{{a^{2} }}} \right) + \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{H_{22} }}{{b^{2} }} + \frac{{H_{66} }}{{a^{2} }}} \right), $$
$$ K_{26} = \left( {\frac{\pi }{b} + \frac{{\lambda \pi^{3} }}{{a^{2} b}} + \frac{{\lambda \pi^{3} }}{{b^{3} }}} \right)A_{13} , $$
$$ K_{27} = \left( {\frac{\pi }{b} + \frac{{\lambda \pi^{3} }}{{a^{2} b}} + \frac{{\lambda \pi^{3} }}{{b^{3} }}} \right)E_{32} , $$
$$ K_{28} = \left( {\frac{\pi }{b} + \frac{{\lambda \pi^{3} }}{{a^{2} b}} + \frac{{\lambda \pi^{3} }}{{b^{3} }}} \right)\beta_{32} , $$
$$ \begin{aligned} K_{33} & = \frac{{\lambda \pi^{6} }}{{a^{2} b^{2} }}\left\{ {\frac{{F_{11} }}{{a^{2} }} + \frac{{F_{22} }}{{b^{2} }} + \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {F_{12} + 2F_{66} } \right)} \right\} + \pi^{4} \left( {\frac{{F_{11} }}{{a^{4} }} + \frac{{F_{22} }}{{b^{4} }}} \right) + \frac{{2\pi^{4} }}{{a^{2} b^{2} }}\left( {F_{12} + 2F_{66} } \right) \\ & \quad + \lambda \pi^{6} \left( {\frac{{F_{11} }}{{a^{6} }} + \frac{{F_{22} }}{{b^{6} }}} \right) + \mu k_{G} \pi^{4} \left( {\frac{1}{{a^{2} b^{2} }} + \frac{1}{{b^{4} }} + \frac{1}{{a^{4} }}} \right) + 2k_{w} + \pi^{2} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {k_{G} + 2\mu \pi^{2} k_{w} } \right), \\ \end{aligned} $$
$$ K_{34} = \frac{{\pi^{3} }}{{a^{3} }}L_{11} + \frac{{\pi^{3} }}{{ab^{2} }}\left( {L_{12} + 2L_{66} } \right) + \frac{{\lambda \pi^{5} }}{a}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{L_{11} }}{{a^{2} }} + \frac{{L_{12} }}{{b^{2} }} + \frac{{2L_{66} }}{{b^{2} }}} \right), $$
$$ K_{35} = \frac{{\pi^{3} }}{{b^{3} }}L_{22} + \frac{{\pi^{3} }}{{a^{2} b}}\left( {L_{12} + 2L_{66} } \right) + \frac{{\lambda \pi^{5} }}{b}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{L_{22} }}{{b^{2} }} + \frac{{L_{12} }}{{a^{2} }} + \frac{{2L_{66} }}{{a^{2} }}} \right), $$
$$ K_{36} = \pi^{4} \left( {\lambda B_{13} + \mu k_{G1} } \right)\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)^{2} + \pi^{2} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {B_{13} + k_{G1} + \mu k_{w1} } \right), $$
$$ K_{37} = \pi^{2} \left( {1 + \frac{{\lambda \pi^{2} }}{{a^{2} }} + \frac{{\lambda \pi^{2} }}{{b^{2} }}} \right)\left( {\frac{{E_{31b} }}{{a^{2} }} + \frac{{E_{32b} }}{{b^{2} }}} \right), $$
$$ K_{38} = \pi^{2} \left( {1 + \frac{{\lambda \pi^{2} }}{{a^{2} }} + \frac{{\lambda \pi^{2} }}{{b^{2} }}} \right)\left( {\frac{{\beta_{31b} }}{{a^{2} }} + \frac{{\beta_{32b} }}{{b^{2} }}} \right), $$
$$ K_{44} = A_{55} + \pi^{2} \left( {\frac{{Q_{66} }}{{b^{2} }} + \frac{{Q_{11} }}{{a^{2} }}} \right) + \lambda \pi^{4} \left( {\frac{{Q_{11} }}{{a^{2} }} + \frac{{Q_{66} }}{{b^{2} }} + \lambda \pi^{2} A_{55} } \right)\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right), $$
$$ K_{45} = \frac{{\pi^{2} }}{ab}\left( {Q_{66} + Q_{12} } \right) + \frac{{\lambda \pi^{4} }}{ab}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {Q_{12} + Q_{66} } \right), $$
$$ K_{46} = \lambda \pi^{3} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{F_{13} }}{a} - \frac{{A_{55} }}{a}} \right) + \frac{\pi }{a}\left( {F_{13} - A_{55} } \right), $$
$$ K_{47} = \frac{\pi }{a}\left( {E_{15} + E_{31c} } \right) + \frac{{\lambda \pi^{3} }}{a}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {E_{15} + E_{31c} } \right), $$
$$ K_{48} = \frac{\pi }{a}\left( {\beta_{15} + \beta_{31c} } \right) + \frac{{\lambda \pi^{3} }}{a}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\beta_{15} + \beta_{31c} } \right), $$
$$ K_{55} = A_{44} + \pi^{2} \left( {\frac{{Q_{66} }}{{a^{2} }} + \frac{{Q_{22} }}{{b^{2} }}} \right) + \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{Q_{66} }}{{a^{2} }} + \frac{{Q_{22} }}{{b^{2} }}} \right), $$
$$ K_{56} = \frac{{\lambda \pi^{3} }}{b}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {A_{44} \, - F_{13} } \right) + \frac{\pi }{b}\left( {A_{44} - F_{13} } \right), $$
$$ K_{57} = - \frac{\pi }{b}\left( {E_{24} + E_{32c} } \right) - \frac{{\lambda \pi^{3} }}{b}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {E_{24} + E_{32c} } \right), $$
$$ K_{58} = - \frac{\pi }{b}\left( {\beta_{24} + \beta_{32c} } \right) - \frac{{\lambda \pi^{3} }}{b}\left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\beta_{24} + \beta_{32c} } \right), $$
$$ \begin{aligned} K_{66} & = A_{33} + \pi^{2} \left( {\frac{{A_{55} }}{{a^{2} }} + \frac{{A_{44} }}{{b^{2} }}} \right) + \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{A_{44} }}{{b^{2} }} + \frac{{A_{55} }}{{a^{2} }}} \right) \\ & \quad + \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\lambda \pi^{2} A_{33} - \pi^{2} k_{G2} - 2\pi^{2} \mu k_{w2} } \right) - \mu k_{G2} \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)^{2} - 2k_{w2} , \\ \end{aligned} $$
$$ K_{67} = E_{33} - \pi^{2} \left( {\frac{{E_{24} }}{{b^{2} }} + \frac{{E_{15} }}{{a^{2} }}} \right) - \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{E_{24} }}{{b^{2} }} + \frac{{E_{15} }}{{a^{2} }}} \right) + \lambda \pi^{2} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)E_{33} , $$
$$ K_{68} = \beta_{33} - \pi^{2} \left( {\frac{{\beta_{24} }}{{b^{2} }} + \frac{{\beta_{15} }}{{a^{2} }}} \right) - \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{\beta_{24} }}{{b^{2} }} + \frac{{\beta_{15} }}{{a^{2} }}} \right) + \lambda \pi^{2} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\beta_{33} , $$
$$ K_{77} = - X_{33} - \pi^{2} \left( {\frac{{X_{11} }}{{a^{2} }} + \frac{{X_{22} }}{{b^{2} }}} \right) - \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{X_{11} }}{{a^{2} }} + \frac{{X_{22} }}{{b^{2} }}} \right) - \lambda \pi^{2} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)X_{33} , $$
$$ K_{78} = - Y_{33} - \pi^{2} \left( {\frac{{Y_{11} }}{{a^{2} }} + \frac{{Y_{22} }}{{b^{2} }}} \right) - \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{Y_{11} }}{{a^{2} }} + \frac{{Y_{22} }}{{b^{2} }}} \right) - \lambda \pi^{2} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)Y_{33} , $$
$$ K_{88} = - \Theta_{33} - \pi^{2} \left( {\frac{{\Theta_{11} }}{{a^{2} }} + \frac{{\Theta_{22} }}{{b^{2} }}} \right) - \lambda \pi^{4} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\left( {\frac{{\Theta_{11} }}{{a^{2} }} + \frac{{\Theta_{22} }}{{b^{2} }}} \right) - \lambda \pi^{2} \left( {\frac{1}{{a^{2} }} + \frac{1}{{b^{2} }}} \right)\Theta_{33} , $$
$$ \begin{aligned} \left\{ {A_{11} ,B_{11} ,F_{11} ,H_{11} ,L_{11} ,Q_{11} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{11}^{\rm c} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{11}^{\rm p} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{11}^{\rm p} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {A_{22} ,B_{22} ,F_{22} ,H_{22} ,L_{22} ,Q_{22} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{22}^{\rm c} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{22}^{\rm p} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{22}^{\rm p} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {A_{12} ,B_{12} ,F_{12} ,H_{12} ,L_{12} ,Q_{12} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{12}^{\rm c} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{12}^{\rm p} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{12}^{\rm p} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {A_{13} ,B_{13} ,F_{13} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{13}^{\rm c} f^{\prime\prime}\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{13}^{\rm p} f^{\prime\prime}\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{13}^{\rm p} f^{\prime\prime}\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {A_{66} ,B_{66} ,F_{66} ,H_{66} ,L_{66} ,Q_{66} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{66}^{\rm c} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{66}^{\rm p} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{66}^{\rm p} \left\{ {1,z,z^{2} ,f\left( z \right),zf\left( z \right),f^{2} \left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {A_{33} ,A_{44} ,A_{55} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {f^{\prime\prime}\left( z \right)^{2} \left\{ {c_{33}^{\rm c} ,c_{44}^{\rm c} ,c_{55}^{\rm c} } \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {f^{\prime\prime}\left( z \right)^{2} \left\{ {c_{33}^{\rm p} ,c_{44}^{\rm p} ,c_{55}^{\rm p} } \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {f^{\prime\prime}\left( z \right)^{2} \left\{ {c_{33}^{\rm p} ,c_{44}^{\rm p} ,c_{55}^{\rm p} } \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \mathop z\limits^{b} = z + \frac{h}{2} + \frac{{h_{\rm p} }}{2}{,}\quad \mathop z\limits^{t} = z - \frac{h}{2} - \frac{{h_{\rm p} }}{2}, $$
$$ \begin{aligned} \left\{ {E_{31} ,E_{31b} ,E_{31c} } \right\} & = \frac{\pi }{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {e_{31} \sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \frac{\pi }{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {e_{31} \sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {E_{32} ,E_{32b} ,E_{32c} } \right\} & = \frac{\pi }{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {e_{32} \sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \frac{\pi }{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {e_{32} \sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {E_{15} ,E_{24} } \right\} & = \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {f^{\prime}\left( z \right)\cos \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {e_{15} ,e_{24} } \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {f^{\prime}\left( z \right)\cos \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {e_{15} ,e_{24} } \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\beta_{31} ,\beta_{31b} ,\beta_{31c} } \right\} & = \frac{\pi }{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {f_{31} \sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \frac{\pi }{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {f_{31} \sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\beta_{32} ,\beta_{32b} ,\beta_{32c} } \right\} & = \frac{\pi }{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {f_{32} \sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \frac{\pi }{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {f_{32} \sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\beta_{15} ,\beta_{24} } \right\} & = \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {f^{\prime}\left( z \right)\cos \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {f_{15} ,f_{24} } \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {f^{\prime}\left( z \right)\cos \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {f_{15} ,f_{24} } \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {X_{11} ,X_{22} } \right\} & = \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {\left\{ {\kappa_{11} ,\kappa_{22} } \right\}\cos^{2} \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right){\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {\left\{ {\kappa_{11} ,\kappa_{22} } \right\}\cos^{2} \left( {\frac{{\pi \mathop z\limits^{b} }}{{h_{\rm p} }}} \right){\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {Y_{11} ,Y_{22} } \right\} & = \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {\left\{ {g_{11} ,g_{22} } \right\}\cos^{2} \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right){\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {\left\{ {g_{11} ,g_{22} } \right\}\cos^{2} \left( {\frac{{\pi \mathop z\limits^{b} }}{{h_{\rm p} }}} \right){\text{d}}z} , \\ \end{aligned} $$
$$ \left\{ {\mathop {A_{31} }\limits^{\phi } \mathop {,B_{31} }\limits^{\phi } ,\mathop {H_{31} }\limits^{\phi } } \right\} = \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {e_{31} \left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} + \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {e_{31} \left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {A_{32} }\limits^{\phi } \mathop {,B_{32} }\limits^{\phi } ,\mathop {H_{32} }\limits^{\phi } } \right\} = \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {e_{32} \left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} + \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {e_{32} \left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {A_{31} }\limits^{\psi } \mathop {,B_{31} ,}\limits^{\psi } \mathop {H_{31} }\limits^{\psi } } \right\} = \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {f_{31} \left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} + \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {f_{31} \left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {A_{32} }\limits^{\psi } \mathop {,B_{32} }\limits^{\psi } ,\mathop {H_{32} }\limits^{\psi } } \right\} = \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {f_{32} \left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} + \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {f_{32} \left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {L_{15} ,}\limits^{\phi } \mathop {l_{24} }\limits^{\phi } } \right\} = \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {zf^{\prime}\left( z \right)\left\{ {e_{15} ,e_{24} } \right\}{\text{d}}z} + \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {zf^{\prime}\left( z \right)\left\{ {e_{15} ,e_{24} } \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {L_{15} ,}\limits^{\psi } \mathop {L_{24} }\limits^{\psi } } \right\} = \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {zf^{\prime}\left( z \right)\left\{ {f_{15} ,f_{24} } \right\}{\text{d}}z} + \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {zf^{\prime}\left( z \right)\left\{ {f_{15} ,f_{24} } \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {R_{11} ,}\limits^{\phi } \mathop {R_{22} }\limits^{\phi } } \right\} = \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {z \cdot \cos \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {\kappa_{11} ,\kappa_{22} } \right\}{\text{d}}z} + \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {z.\cos \left( {\frac{{\pi \mathop z\limits^{b} }}{{h_{\rm p} }}} \right)\left\{ {\kappa_{11} ,\kappa_{22} } \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {S_{11} ,}\limits^{\phi } \mathop {S_{22} }\limits^{\phi } } \right\} = \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {z \cdot \cos \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {g_{11} ,g_{22} } \right\}{\text{d}}z} + \frac{{\phi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {z \cdot \cos \left( {\frac{{\pi \mathop z\limits^{b} }}{{h_{\rm p} }}} \right)\left\{ {g_{11} ,g_{22} } \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {S_{11} ,}\limits^{\psi } \mathop {S_{22} }\limits^{\psi } } \right\} = \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {z \cdot \cos \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {g_{11} ,g_{22} } \right\}{\text{d}}z} + \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {z \cdot \cos \left( {\frac{{\pi \mathop z\limits^{b} }}{{h_{\rm p} }}} \right)\left\{ {g_{11} ,g_{22} } \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {Z_{11} ,}\limits^{\psi } \mathop {Z_{22} }\limits^{\psi } } \right\} = \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {z \cdot \cos \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {\mu_{11} ,\mu_{22} } \right\}{\text{d}}z} + \frac{{\psi_{0} }}{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {z \cdot \cos \left( {\frac{{\pi \mathop z\limits^{b} }}{{h_{\rm p} }}} \right)\left\{ {\mu_{11} ,\mu_{22} } \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {S_{33} ,}\limits^{\phi } \mathop {R_{33} }\limits^{\phi } } \right\} = \frac{{\pi \phi_{0} }}{{h_{\rm p}^{2} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {\sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {g_{33} ,\kappa_{33} } \right\}{\text{d}}z} + \frac{{\pi \phi_{0} }}{{h_{\rm p}^{2} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {\sin \left( {\frac{{\pi \mathop z\limits^{b} }}{{h_{\rm p} }}} \right)\left\{ {g_{33} ,\kappa_{33} } \right\}{\text{d}}z} , $$
$$ \left\{ {\mathop {S_{33} ,}\limits^{\psi } \mathop {Z_{33} }\limits^{\psi } } \right\} = \frac{{\pi \psi_{0} }}{{h_{\rm p}^{2} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {\sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {g_{33} ,\mu_{33} } \right\}{\text{d}}z} + \frac{{\pi \psi_{0} }}{{h_{\rm p}^{2} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{ - h_{\rm p} }} {\sin \left( {\frac{{\pi \mathop z\limits^{b} }}{{h_{\rm p} }}} \right)\left\{ {g_{33} ,\mu_{33} } \right\}{\text{d}}z} , $$
$$ \begin{aligned} \left\{ {\mathop {A_{11} }\limits^{T} \mathop {,B_{11} }\limits^{T} ,\mathop {H_{11} }\limits^{T} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{11}^{\rm c} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{11}^{\rm p} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{11}^{\rm p} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\mathop {A_{12} }\limits^{T} \mathop {,B_{12} }\limits^{T} ,\mathop {H_{12} }\limits^{T} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{12}^{\rm c} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{12}^{\rm p} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{12}^{\rm p} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\mathop {A_{13} }\limits^{T} \mathop {,B_{13} }\limits^{T} ,\mathop {H_{13} }\limits^{T} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{13}^{\rm c} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{13}^{\rm p} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{13}^{\rm p} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\mathop {A_{22} }\limits^{T} \mathop {,B_{22} }\limits^{T} ,\mathop {H_{22} }\limits^{T} } \right\} & = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{22}^{\rm c} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{22}^{\rm p} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} \\ & \quad + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{22}^{\rm p} \alpha T\left( z \right)\left\{ {1,z,f\left( z \right)} \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\mathop {F_{31} }\limits^{T} \mathop {,\,F_{32} }\limits^{T} ,\mathop {E_{31} }\limits^{T} ,\mathop {E_{32} }\limits^{T} } \right\} & = \frac{\pi }{{h_{\rm p} }}\int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {\alpha T\left( z \right)\sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {f_{31} ,f_{32} ,e_{31} ,e_{32} } \right\}{\text{d}}z} \\ \, & \quad + \frac{\pi }{{h_{\rm p} }}\int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {\alpha T\left( z \right)\sin \left( {\frac{{\pi \mathop z\limits^{t} }}{{h_{\rm p} }}} \right)\left\{ {f_{31} ,f_{32} ,e_{31} ,e_{32} } \right\}{\text{d}}z} , \\ \end{aligned} $$
$$ \mathop {F_{33} }\limits^{T} = \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{33}^{\rm c} \alpha T\left( z \right)f^{\prime\prime}\left( z \right){\text{d}}z} + \int\limits_{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}^{{{\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} + h_{\rm p} }} {c_{33}^{\rm p} \alpha T\left( z \right)f^{\prime\prime}\left( z \right){\text{d}}z} + \int\limits_{{ - {\raise0.5ex\hbox{$\scriptstyle h$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} - h_{\rm p} }}^{{{\raise0.5ex\hbox{$\scriptstyle { - h}$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {c_{33}^{\rm p} \alpha T\left( z \right)f^{\prime\prime}\left( z \right){\text{d}}z} . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefi, M., Kiani, M. & Civalek, O. 3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets. Appl. Phys. A 126, 76 (2020). https://doi.org/10.1007/s00339-019-3241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3241-1

Keywords

Navigation