Skip to main content

Advertisement

Log in

The Effects of IL-1β on Astrocytes are Conveyed by Extracellular Vesicles and Influenced by Age

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aging brain is associated with significant pathophysiological changes reflected in changes in astrocyte function. In this study, we hypothesized that the response of astrocytes to mechanical and inflammatory stimulation would differ with long-term culture. We report that naïve short-term cultured (young) and long-term cultured astrocytes (aged) exhibit similar recovery to a scratch wound assay. However, in response to IL-1β young astrocytes have an arrested recovery which is not observed in IL-1β treated aged astrocytes. We had recently reported that astrocytes release extracellular vesicles (EVs) in response to IL-1β treatment. Given the disparate phenotypes between young and aged astrocytes, we next examined whether the EVs released from astrocytes reflected the differences in cellular responses to scratch and IL-1B treatment. Young cultures challenged with EVs collected from IL-1β treated cells exhibited a robust inhibition of wound recovery when compared to astrocytes treated with EVs collected from IL-1β treated aged astrocyte cultures. Heterochronic experiments also determined that the effect of IL-1β on astrocyte scratch wound recovery could be recapitulated by EVs alone. Taken together, these findings provide new information on how senescence alters the functional response and how EVs from astrocytes may elicit changes in glial responses which may have relevance to understanding neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nature Rev Neurosci 6:626–640

    CAS  Google Scholar 

  2. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    CAS  PubMed  Google Scholar 

  3. Cohen J, Torres C (2019) Astrocyte senescence: evidence and significance. Aging Cell 18:e12937

    PubMed  PubMed Central  Google Scholar 

  4. Bitto A et al (2010) Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 316:2961–2968

    CAS  PubMed  Google Scholar 

  5. Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B (2009) Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J Neurosci Res 87:2484–2497

    CAS  PubMed  Google Scholar 

  6. Pertusa M, Garcia-Matas S, Rodriguez-Farre E, Sanfeliu C, Cristofol R (2007) Astrocytes aged in vitro show a decreased neuroprotective capacity. J Neurochem 101:794–805

    CAS  PubMed  Google Scholar 

  7. Salminen A et al (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 34:3–11

    PubMed  Google Scholar 

  8. Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    CAS  PubMed  Google Scholar 

  9. Tkach M, Kowal J, Thery C (2018) Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond B Biol Sci 373:20160479

    PubMed  Google Scholar 

  10. Rashed H et al (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18:538

    Google Scholar 

  11. Rojas et al (2018) DPTIP, a newly identified potent brain penetrant neutral sphingomyelinase 2 inhibitor, regulates astrocyte-peripheral immune communication following brain inflammation. Sci Rep 8:17715

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dickens AM et al (2017) Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signaling 10:7696

    Google Scholar 

  13. Chen Y, Tang Y, Fan GC, Duan DD (2018) Extracellular vesicles as novel biomarkers and pharmaceutic targets of diseases. Acta Pharmacol Sin 39:499–500

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 3:23743

    Google Scholar 

  15. Chen G et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382–386

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Willis CM et al (2017) A refined bead-free method to identify astrocytic exosomes in primary glial cultures and blood plasma. Front Neurosci 11:335

    PubMed  PubMed Central  Google Scholar 

  17. Crocker SJ, Milner R, Pham-Mitchell N, Campbell IL (2006) Cell and agonist-specific regulation of genes for matrix metalloproteinases and their tissue inhibitors by primary glial cells. J Neurochem 98:812–823

    CAS  PubMed  Google Scholar 

  18. Johnson KM, Crocker SJ (2015) TIMP-1 couples RhoK activation to IL-1beta-induced astrocyte responses. Neurosci Lett 609:165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson KM, Milner R, Crocker SJ (2015) Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli. Neurosci Lett 600:104–109

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Willis CM et al (2019) Extracellular vesicle fibrinogen induces encephalitogenic CD8+ T cells in a mouse model of multiple sclerosis. Proc Natl Acad Sci USA 116:10488–10493

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawano H et al (2012) Long-term culture of astrocytes attenuates the readily releasable pool of synaptic vesicles. PLoS ONE 7:e48034

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    CAS  PubMed  Google Scholar 

  23. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  24. Baker DJ et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bussian TJ et al (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeon OH et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23:775–781

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alcorta DA et al (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93:13742–13747

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stein GH, Drullinger LF, Soulard A, Dulic V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19:2109–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Qian Y, Chen X (2013) Senescence regulation by the p53 protein family. Methods Mol Biol (Clifton, N.J.) 965:37–61

    CAS  PubMed Central  Google Scholar 

  30. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Ann Rev Pathol 5:99–118

    CAS  Google Scholar 

  31. Wiley CD et al (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metabol 23:303–314

    CAS  Google Scholar 

  32. Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49

    CAS  PubMed  Google Scholar 

  33. Arriola Apelo SI, Lamming DW (2016) Rapamycin: an inhibitor of aging emerges from the soil of Easter Island. J Gerontol A Biol Sci Med Sci 71:841–849

    PubMed  PubMed Central  Google Scholar 

  34. Powell JD, Pollizzi KN, Heikamp EB, Horton MR (2012) Regulation of immune responses by mTOR. Annu Rev Immunol 30:39–68

    CAS  PubMed  Google Scholar 

  35. Wang R, Sunchu B, Perez VI (2017) Rapamycin and the inhibition of the secretory phenotype. Exp Gerontol 94:89–92

    CAS  PubMed  Google Scholar 

  36. Wang R et al (2017) Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16:564–574

    CAS  PubMed  PubMed Central  Google Scholar 

  37. van der Loo B, Fenton MJ, Erusalimsky JD (1998) Cytochemical detection of a senescence-associated beta-galactosidase in endothelial and smooth muscle cells from human and rabbit blood vessels. Exp Cell Res 241:309–315

    PubMed  Google Scholar 

  38. Itahana K, Campisi J, Dimri GP (2007) Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol (Clifton, N.J.) 371:21–31

    CAS  Google Scholar 

  39. Demaria M et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhat R et al (2012) Astrocyte senescence as a component of Alzheimer's disease. PLoS ONE 7:e45069

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang P et al (2019) Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. https://doi.org/10.1038/s41593-019-0372-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nicaise AM et al (2019) Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1818348116

    Article  PubMed  PubMed Central  Google Scholar 

  43. Clarke LE et al (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115:e1896–e1905

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389

    CAS  PubMed  Google Scholar 

  45. Foerster S, Hill MFE, Franklin RJM (2019) Diversity in the oligodendrocyte lineage: plasticity or heterogeneity? Glia 67:1797–1805

    PubMed  Google Scholar 

  46. Laberge RM, Awad P, Campisi J, Desprez PY (2012) Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron 5:39–44

    CAS  PubMed  Google Scholar 

  47. Acosta JC et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    CAS  PubMed  Google Scholar 

  48. Coppe JP et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    CAS  PubMed  Google Scholar 

  49. Borghesan M et al (2019) Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep 27:3956–3971.e3956

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Silverman JM et al (2019) CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)(G93A) ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J Biol Chem 294:3744–3759

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pei X, Li Y, Zhu L, Zhou Z (2019) Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke. Exp Cell Res 382:111474

    CAS  PubMed  Google Scholar 

  52. Chistiakov DA, Chistiakov AA (2017) Alpha-synuclein-carrying extracellular vesicles in Parkinson's disease: deadly transmitters. Acta Neurol Belg 117:43–51

    PubMed  Google Scholar 

  53. Goetzl EJ et al (2015) Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85:40–47

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Goetzl EJ, Schwartz JB, Abner EL, Jicha GA, Kapogiannis D (2018) High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann Neurol 83:544–552

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao J et al (2019) Adipocyte-derived extracellular vesicles modulate appetite and weight through mTOR signalling in the hypothalamus. Acta Physiol (Oxf). https://doi.org/10.1111/apha.13339

    Article  Google Scholar 

  56. Watson LS, Hamlett ED, Stone TD, Sims-Robinson C (2019) Neuronally derived extracellular vesicles: an emerging tool for understanding Alzheimer's disease. Mol Neurodegener 14:22

    PubMed  PubMed Central  Google Scholar 

  57. Madill M et al (2017) Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. Mol Brain 10:22

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Crocker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue: In Honor of Professor Vittorio Gallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willis, C.M., Sutter, P., Rouillard, M. et al. The Effects of IL-1β on Astrocytes are Conveyed by Extracellular Vesicles and Influenced by Age. Neurochem Res 45, 694–707 (2020). https://doi.org/10.1007/s11064-019-02937-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02937-8

Keywords

Navigation