Skip to main content
Log in

An enzymatic method for precise oxygen affinity measurements over nanomolar-to-millimolar concentration regime

  • Techniques
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Oxygen affinity is an important property of metalloproteins that helps elucidate their reactivity profile and mechanism. Heretofore, oxygen affinity values were determined either using flash photolysis and polarography techniques that require expensive instrumentation, or using oxygen titration methods which are erroneous at low nanomolar and at high millimolar oxygen concentrations. Here, we describe an inexpensive, easy-to-setup, and a one-pot method for oxygen affinity measurements that uses the enzyme chlorite dismutase (Cld) as a precise in situ oxygen source. Using this method, we measure thermodynamic and kinetic oxygen affinities (Kd and KM) of different classes of heme and non-heme metalloproteins involved in oxygen transport, sensing, and catalysis. The method enables oxygen affinity measurements over a wide concentration range from 10 nM to 5 mM which is unattainable by simply diluting oxygen-saturated buffers. In turn, we were able to precisely measure oxygen affinities of a model set of eight different metalloproteins with affinities ranging from 48 ± 3 nM to 1.18 ± 0.03 mM. Overall, the Cld method is easy and inexpensive to set up, requires significantly lower quantities of protein, enables precise oxygen affinity measurements, and is applicable for proteins exhibiting nanomolar-to-millimolar affinity values.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Falkowski PG, Godfrey LV (2008) Electrons, life and the evolution of Earth’s oxygen cycle. Phil Trans Royal Soc B Biol Sci 363:2705–2716

    Article  CAS  Google Scholar 

  2. Huang X, Groves JT (2017) Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem Rev 118:2491–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wong LL, Bell SG (2006) Iron: heme proteins, mono- & dioxygenases. In: Encyclopedia of inorganic chemistry. John Wiley & Sons Ltd.

  4. Unno M, Matsui T, Ikeda-Saito M (2007) Structure and catalytic mechanism of heme oxygenase. Nat Prod Rep 24:553–570

    Article  CAS  PubMed  Google Scholar 

  5. Jasniewski AJ, Que L Jr (2018) Dioxygen activation by nonheme Diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem Rev 118:2554–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siegbahn PE, Haeffner F (2004) Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases. J Am Chem Soc 126:8919–8932

    Article  CAS  PubMed  Google Scholar 

  7. Korendovych IV, Kryatov SV, Rybak-Akimova EV (2007) Dioxygen activation at non-heme iron: insights from rapid kinetic studies. Acc Chem Res 40:510–521

    Article  CAS  PubMed  Google Scholar 

  8. Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Oxygen binding, activation, and reduction to water by copper proteins. Angew Chem Int Ed 40:4570–4590

    Article  CAS  Google Scholar 

  9. Stoj CS, Kosman DJ (2006) Copper proteins: oxidases. Encyclopedia of Inorg Chem

  10. Mason HS (1957) Mechanisms of oxygen metabolism. Science 125:1185–1188

    Article  CAS  PubMed  Google Scholar 

  11. Truesdale GA, Downing AL (1954) Solubility of oxygen in water. Nature 173:1236

    Article  CAS  Google Scholar 

  12. Fielding AJ, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L Jr (2011) A hyperactive cobalt-substituted extradiol-cleaving catechol dioxygenase. J Biol Inorg Chem 16:341–355

    Article  CAS  PubMed  Google Scholar 

  13. de Waal D, Wilkins R (1976) Kinetics of the hemerythrin-oxygen interaction. J Biol Chem 251:2339–2343

    PubMed  Google Scholar 

  14. Sono M, Smith PD, McCray JA, Asakura T (1976) Kinetic and equilibrium studies of the reactions of heme-substituted horse heart myoglobins with oxygen and carbon monoxide. J Biol Chem 251:1418–1426

    CAS  PubMed  Google Scholar 

  15. Hargrove MS (2000) A flash photolysis method to characterize hexacoordinate hemoglobin kinetics. Biophys J 79:2733–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhagi-Damodaran A, Kahle M, Shi Y, Zhang Y, Adelroth P, Lu Y (2017) Insights into how heme reduction potentials modulate enzymatic activities of a myoglobin-based functional oxidase. Angew Chem Int Ed 56:622–626

    Article  CAS  Google Scholar 

  17. Hoffman BM, Gibson QH (1978) On the photosensitivity of liganded hemoproteins and their metal-substituted analogues. Proc Nat Acad Sci 75:21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shibata T, Nagao S, Fukaya M, Tai H, Nagatomo S, Morihashi K, Matsuo T, Hirota S, Suzuki A, Imai K, Yamamoto Y (2010) Effect of heme modification on oxygen affinity of myoglobin and equilibrium of the acid − alkaline transition in metmyoglobin. J Am Chem Soc 132:6091–6098

    Article  CAS  PubMed  Google Scholar 

  19. Imai K (1981) Measurement of accurate oxygen equilibrium curves by an automatic oxygenation apparatus. Methods Enzymol 76:438–449

    Article  CAS  PubMed  Google Scholar 

  20. Sono M, Asakura T (1975) Decrease in oxygen affinity of myoglobin by formylation of vinyl groups of heme. J biol Chem 250:5227–5232

    CAS  PubMed  Google Scholar 

  21. Bruno S, Bonaccio M, Bettati S, Rivetti C, Viappiani C, Abbruzzetti S, Mozzarelli A (2001) High and low oxygen affinity conformations of T state hemoglobin. Prot Sci: a pub Prot Soc 10:2401–2407

    Article  CAS  Google Scholar 

  22. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North-Holland Publ Comp, Amsterdam

    Google Scholar 

  23. Imai K, Yonetani T (1975) pH dependence of the Adair constants of human hemoglobin. Nonuniform contribution of successive oxygen bindings to the alkaline Bohr effect. J Biol Chem 250:2227–2231

    CAS  PubMed  Google Scholar 

  24. Schaffner I, Mlynek G, Flego N, Pühringer D, Libiseller-Egger J, Coates L, Hofbauer S, Bellei M, Furtmüller PG, Battistuzzi G (2017) Molecular mechanism of enzymatic chlorite detoxification: insights from structural and kinetic studies. ACS Catal 7:7962–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Streit BR, Blanc B, Lukat-Rodgers GS, Rodgers KR, DuBois JL (2010) How active-site protonation state influences the reactivity and ligation of the heme in chlorite dismutase. J Am Chem Soc 132:5711–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Streit BR, DuBois JL (2008) Chemical and steady-state kinetic analyses of a heterologously expressed heme dependent chlorite dismutase. Biochem 47:5271–5280

    Article  CAS  Google Scholar 

  27. Lee AQ, Streit BR, Zdilla MJ, Abu-Omar MM, DuBois JL (2008) Mechanism of and exquisite selectivity for O-O bond formation by the heme-dependent chlorite dismutase. Proc Nat Acad Sci 105:15654–15659

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dassama LM, Yosca TH, Conner DA, Lee MH, Blanc B, Streit BR, Green MT, DuBois JL, Krebs C, Bollinger JM Jr (2012) O2-evolving chlorite dismutase as a tool to study O2-utilizing enzymes. Biochem 51:1607–1616

    Article  CAS  Google Scholar 

  29. Takahashi S, Ishikawa K, Takeuchi N, Ikeda-Saito M, Yoshida T, Rousseau DL (1995) Oxygen-bound heme oxygenase complex: evidence for a highly bent structure of the coordinated oxygen. J Am Chem Soc 117:6002–6006

    Article  CAS  Google Scholar 

  30. Reedy CJ, Gibney BR (2004) Heme protein assemblies. Chem Rev 104:617–650

    Article  CAS  PubMed  Google Scholar 

  31. Feig AL, Lippard SJ (1994) Reactions of Non-heme iron(II) centers with dioxygen in biology and chemistry. Chem Rev 94:759–805

    Article  CAS  Google Scholar 

  32. Chen H, Ikeda-Saito M, Shaik S (2008) Nature of the Fe − O2 bonding in oxy-myoglobin: effect of the protein. J Am Chem Soc 130:14778–14790

    Article  CAS  PubMed  Google Scholar 

  33. Raven EL, Mauk AG (2000) Chemical reactivity of the active site of myoglobin. Adv Inorg Chem 51:1–50

    Article  Google Scholar 

  34. Bhagi-Damodaran A, Petrik I, Lu Y (2016) Using biosynthetic models of heme-copper oxidase and nitric oxide reductase in myoglobin to elucidate structural features responsible for enzymatic activities. Israel J Chem 56:773–790

    Article  CAS  Google Scholar 

  35. Olson JS, Phillips GN Jr (1997) Myoglobin discriminates between O2, NO, and CO by electrostatic interactions with the bound ligand. J Biol Inorg Chem 2:544–552

    Article  CAS  Google Scholar 

  36. Rohlfs RJ, Mathews AJ, Carver TE, Olson JS, Springer BA, Egeberg KD, Sligar SG (1990) The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J Bio Chem 265:3168–3176

    CAS  Google Scholar 

  37. Olson JS, Mathews AJ, Rohlfs RJ, Springer BA, Egeberg KD, Sligar SG, Tame J, Renaud JP, Nagai K (1988) The role of the distal histidine in myoglobin and haemoglobin. Nature 336:265–266

    Article  CAS  PubMed  Google Scholar 

  38. Ikeda-Saito M, Hori H, Andersson LA, Prince RC, Pickering IJ, George GN, Sanders CR 2nd, Lutz RS, McKelvey EJ, Mattera R (1992) Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants. J Biol Chem 267:22843–22852

    CAS  PubMed  Google Scholar 

  39. Hofbauer S, Schaffner I, Furtmuller PG, Obinger C (2014) Chlorite dismutases—a heme enzyme family for use in bioremediation and generation of molecular oxygen. Biotech J 9:461–473

    Article  CAS  Google Scholar 

  40. Reedy CJ, Elvekrog MM, Gibney BR (2007) Development of a heme protein structure–electrochemical function database. Nucleic Acids Res 36:D307–D313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhagi-Damodaran A, Petrik ID, Marshall NM, Robinson H, Lu Y (2014) Systematic tuning of heme redox potentials and its effects on O2 reduction rates in a designed oxidase in myoglobin. J Am Chem Soc 136:11882–11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nelson DL, Cox MM (2005) Lehninger principles of biochemistry. Macmillan, New York

    Google Scholar 

  43. Wright TJ, Davis RW (2015) Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals. J Exp Biol 218:2180–2189

    Article  PubMed  Google Scholar 

  44. Basolo F, Hoffman BM, Ibers JA (1975) Synthetic oxygen carriers of biological interest. Acc Chem Res 8:384–392

    Article  CAS  Google Scholar 

  45. Ioanoviciu A, Yukl ET, Moënne-Loccoz P, Ortiz de Montellano PR (2007) DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochem 46:4250–4260

    Article  CAS  Google Scholar 

  46. Cho HY, Cho HJ, Kim YM, Oh JI, Kang BS (2009) Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J Biol Chem 284:13057–13067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sousa EH, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA (2007) DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Prot Sci 16:1708–1719

    Article  CAS  Google Scholar 

  48. Hespen CW, Bruegger JJ, Phillips-Piro CM, Marletta MA (2016) Structural and functional evidence indicates selective oxygen signaling in Caldanaerobacter subterraneus H-NOX. ACS Chem Biol 11:2337–2346

    Article  CAS  PubMed  Google Scholar 

  49. Weinert EE, Phillips-Piro CM, Tran R, Mathies RA, Marletta MA (2011) Controlling conformational flexibility of an O2-binding H-NOX domain. Biochem 50:6832–6840

    Article  CAS  Google Scholar 

  50. Mbughuni MM, Meier KK, Münck E, Lipscomb JD (2012) Substrate-mediated oxygen activation by homoprotocatechuate 2, 3-dioxygenase: intermediates formed by a tyrosine 257 variant. Biochem 51:8743–8754

    Article  CAS  Google Scholar 

  51. Stenkamp RE (1994) Dioxygen and hemerythrin. Chem Rev 94:715–726

    Article  CAS  Google Scholar 

  52. Miller MA, Lipscomb JD (1996) Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. A dioxygenase with catalase activity. J Biol Chem 271:5524–5535

    Article  CAS  PubMed  Google Scholar 

  53. Andorfer MC, Lewis JC (2018) Understanding and improving the activity of flavin-dependent halogenases via random and targeted mutagenesis. Ann Rev Biochem 87:159–185

    Article  CAS  PubMed  Google Scholar 

  54. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL (2014) Protein design: toward functional metalloenzymes. Chem Rev 11:3495–3578

    Article  CAS  Google Scholar 

  55. Mirts EN, Bhagi-Damodaran A, Lu Y (2019) Understanding and modulating metalloenzymes with unnatural amino acids, non-native metal ions, and non-native metallocofactors. Acc Chem Res 52:935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by start-up funds from the Regents of University of Minnesota. The authors are grateful to Prof. J. D. Lipscomb, Dr. Rahul Banerjee and Dr. Melanie Rogers for providing enzymes HPCD, hemerythrin and lab space/equipment for few experiments described in this work. We are grateful to Prof. Carsten Krebs and Prof. J. Martin Bollinger Jr. for the Cld plasmid and Prof. Yi Lu for sw WTMb plasmid. We thank Prof. Michael A. Marletta and Dr. Christopher Lemon for gifting the H-NOX enzyme and valuable discussions. We thank Addgene for providing GroESL plasmid. We also thank Profs. J. D. Lipscomb, Connie Lu and Yi Lu for helpful comments to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambika Bhagi-Damodaran.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanyal, R., Bhagi-Damodaran, A. An enzymatic method for precise oxygen affinity measurements over nanomolar-to-millimolar concentration regime. J Biol Inorg Chem 25, 181–186 (2020). https://doi.org/10.1007/s00775-019-01750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01750-6

Keywords

Navigation