Skip to main content

Advertisement

Log in

Kamonolol acetate from Ferula pseudalliacea as AChE inhibitor: in vitro and in silico studies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is one of the most common causes of dementia. Acetylcholinesterase has been considered as the main therapeutic target in the treatment of Alzheimer’s disease. Natural products are the richest source of lead compounds for the discovery and development of new drugs. In the present contribution, the hierarchical biology–oriented method was applied to discover the active gradients of F. pseudalliacea root as AChE inhibitors. The Kamonolol acetate was extracted and identified from the n-hexane extract of F. pseudalliacea root. The Kamonolol acetate inhibited the AChE with IC50: 63.9 μM. Molecular modeling studies showed that Kamonolol acetate interacted with CAS and PAS of AChE active site. Kinetics in accompany with molecular modeling studies demonstrated that Kamonolol acetate inhibited AChE in the mixed-type model. The results indicated that Kamonolol acetate could be considered as a valuable lead compound in the design of AChE inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goedert M, Spillantini MG (2006) A century of Alzheimer's disease. Science 314(5800):777–781

    CAS  PubMed  Google Scholar 

  2. Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111

    PubMed  PubMed Central  Google Scholar 

  3. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bush AI (2001) Therapeutic targets in the biology of Alzheimer's disease. Curr Opin Psychiatry 14(4):341–348

    Google Scholar 

  5. Birks JS (2006) Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev 1

  6. Newman DJ, Cragg GM, Holbeck S, Sausville EA (2002) Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr Cancer Drug Targets 2(4):279–308

    CAS  PubMed  Google Scholar 

  7. Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52(6):1189–1208

    CAS  PubMed  Google Scholar 

  8. Houghton PJ, Ren Y, Howes M-J (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23(2):181–199

    CAS  PubMed  Google Scholar 

  9. Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14(4):289–300

    CAS  PubMed  Google Scholar 

  10. de Souza LG, Rennó MN, Figueroa-Villar JD (2016) Coumarins as cholinesterase inhibitors: a review. Chem Biol Interact 254:11–23

    PubMed  Google Scholar 

  11. Kasaian J, Iranshahy M, Iranshahi M (2014) Synthesis, biosynthesis and biological activities of galbanic acid–a review. Pharm Biol 52(4):524–531

    CAS  Google Scholar 

  12. Salem SB, Jabrane A, Harzallah-Skhiri F, Jannet HB (2013) New bioactive dihydrofuranocoumarins from the roots of the Tunisian Ferula lutea (Poir.) Maire. Bioorg Med Chem Lett 23(14):4248–4252

    PubMed  Google Scholar 

  13. Dincel D, HATIPOĞLU SD, GÖREN AC, TOPÇU G (2013) Anticholinesterase furocoumarins from Heracleum platytaenium, a species endemic to the Ida Mountains. Turk J Chem 37(4):675–683

    CAS  Google Scholar 

  14. Awang K, Chan G, Litaudon M, Ismail NH, Martin M-T, Gueritte F (2010) 4-Phenylcoumarins from Mesua elegans with acetylcholinesterase inhibitory activity. Biorg Med Chem 18(22):7873–7877

    CAS  Google Scholar 

  15. Pimenov M, Leonov M (2004) The Asian Umbelliferae biodiversity database (ASIUM) with particular reference to South-West Asian taxa. Turk J Bot 28(1–2):139–145

    Google Scholar 

  16. Ghareeb DA, ElAhwany AM, El-mallawany SM, Saif AA (2014) In vitro screening for anti-acetylcholiesterase, anti-oxidant, anti-glucosidase, anti-inflammatory and anti-bacterial effect of three traditional medicinal plants. Biotechnol Biotechnol Equip 28(6):1155–1164

    PubMed  PubMed Central  Google Scholar 

  17. Dehpour AA, Ebrahimzadeh MA, Fazel NS, Mohammad NS (2009) Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Aceites 60(4):405–412

    CAS  Google Scholar 

  18. Lee C-L, Chiang L-C, Cheng L-H, Liaw C-C, Abd El-Razek MH, Chang F-R, Wu Y-C (2009) Influenza A (H1N1) antiviral and cytotoxic agents from Ferula assa-foetida. J Nat Prod 72(9):1568–1572

    CAS  PubMed  Google Scholar 

  19. Fatehi M, Farifteh F, Fatehi-Hassanabad Z (2004) Antispasmodic and hypotensive effects of Ferula asafoetida gum extract. J Ethnopharmacol 91(2–3):321–324

    PubMed  Google Scholar 

  20. Abu-Zaiton AS (2010) Anti-diabetic activity of Ferula assafoetida extract in normal and alloxan-induced diabetic rats. Pak J Biol Sci 13(2):97

    PubMed  Google Scholar 

  21. Vijayalakshmi SA, Bhat P, Chaturvedi A, Bairy K, Kamath S (2012) Evaluation of the effect of Ferula asafoetida Linn. gum extract on learning and memory in Wistar rats. Indian J Pharm 44(1):82

    CAS  Google Scholar 

  22. Adhami H-R, Fitz V, Lubich A, Kaehlig H, Zehl M, Krenn L (2014) Acetylcholinesterase inhibitors from galbanum, the oleo gum-resin of Ferula gummosa Boiss. Phytochem Lett 10:lxxxii–lxxxvii

    CAS  Google Scholar 

  23. Xing Y, Li N, Zhou D, Chen G, Jiao K, Wang W, Si Y, Hou Y (2017) Sesquiterpene coumarins from Ferula sinkiangensis act as neuroinflammation inhibitors. Planta Med 83(01/02):135–142

    CAS  PubMed  Google Scholar 

  24. Dastan D, Salehi P, Gohari AR, Zimmermann S, Kaiser M, Hamburger M, Khavasi HR, Ebrahimi SN (2012) Disesquiterpene and sesquiterpene coumarins from Ferula pseudalliacea, and determination of their absolute configurations. Phytochemistry 78:170–178

    CAS  PubMed  Google Scholar 

  25. Dastan D, Salehi P, Gohari AR, Ebrahimi SN, Aliahmadi A, Hamburger M (2014) Bioactive sesquiterpene coumarins from Ferula pseudalliacea. Planta Med 80(13):1118–1123

    CAS  PubMed  Google Scholar 

  26. Suttie J (1987) The biochemical basis of warfarin therapy. The new dimensions of warfarin prophylaxis. Springer, Berlin, pp 3–16

    Google Scholar 

  27. Ferreira SZ, Carneiro HC, Lara HA, Alves RB, Resende JM, Oliveira HM, Silva LM, Santos DA, Freitas RP (2015) Synthesis of a new peptide–coumarin conjugate: a potential agent against cryptococcosis. ACS Med Chem Lett 6(3):271–275

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Neyts J, Clercq ED, Singha R, Chang YH, Das AR, Chakraborty SK, Hong SC, Tsay S-C, Hsu M-H, Hwu JR (2009) Structure−activity relationship of new anti-hepatitis C virus agents: heterobicycle−coumarin conjugates. J Med Chem 52(5):1486–1490

    CAS  PubMed  Google Scholar 

  29. Khan KM, Saify ZS, Khan MZ, Zia-Ullah CMI, Atta-ur-Rahman PS, Chohan ZH, Supuran CT (2004) Synthesis of coumarin derivatives with cytotoxic, antibacterial and antifungal activity. J Enzyme Inhib Med Chem 19(4):373–379

    CAS  PubMed  Google Scholar 

  30. Sashidhara KV, Kumar A, Kumar M, Sarkar J, Sinha S (2010) Synthesis and in vitro evaluation of novel coumarin–chalcone hybrids as potential anticancer agents. Bioorg Med Chem Lett 20(24):7205–7211

    CAS  PubMed  Google Scholar 

  31. Kontogiorgis C, Nicolotti O, Mangiatordi GF, Tognolini M, Karalaki F, Giorgio C, Patsilinakos A, Carotti A, Hadjipavlou-Litina D, Barocelli E (2015) Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin derivatives. J Enzyme Inhib Med Chem 30(6):925–933

    CAS  PubMed  Google Scholar 

  32. Kurt BZ, Gazioglu I, Sonmez F, Kucukislamoglu M (2015) Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives. Bioorg Chem 59:80–90

    CAS  PubMed  Google Scholar 

  33. Ellman GL, Courtney KD, Andres Jr V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    CAS  PubMed  Google Scholar 

  34. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Razzaghi-Asl N, Ebadi A, Edraki N, Shahabipour S, Miri R (2013) Fragment-based binding efficiency indices in bioactive molecular design: a computational approach to BACE-1 inhibitors. Iran J Pharm Res 12(3):423

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ebadi A, Razzaghi-Asl N, Shahabipour S, Miri R (2014) Ab-initio and conformational analysis of a potent VEGFR-2 inhibitor: a case study on Motesanib. Iran J Pharm Res 13(2):405

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Razzaghi-Asl N, Sepehri S, Ebadi A, Miri R, Shahabipour S (2015) Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors. Struct Chem 26(2):607–621

    CAS  Google Scholar 

  38. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Google Scholar 

  39. Schüttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr Sect D Biol Crystallogr 60(8):1355–1363

    Google Scholar 

  40. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641

    CAS  Google Scholar 

  41. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    CAS  Google Scholar 

  42. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    CAS  Google Scholar 

  43. Pohanka M, Hrabinova M, Kuca K, Simonato J-P (2011) Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. Int J Mol Sci 12(4):2631–2640

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi J, Tu W, Luo M, Huang C (2017) Molecular docking and molecular dynamics simulation approaches for identifying new lead compounds as potential AChE inhibitors. Mol Simul 43(2):102–109

    CAS  Google Scholar 

  45. Kiametis AS, Silva MA, Romeiro LA, Martins JB, Gargano R (2017) Potential acetylcholinesterase inhibitors: molecular docking, molecular dynamics, and in silico prediction. J Mol Model 23(2):67

    PubMed  Google Scholar 

  46. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4(3):206

    CAS  Google Scholar 

Download references

Funding

The study was funded by the Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences (No. 950117130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ebadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastan, D., Validi, S. & Ebadi, A. Kamonolol acetate from Ferula pseudalliacea as AChE inhibitor: in vitro and in silico studies. Struct Chem 31, 965–973 (2020). https://doi.org/10.1007/s11224-019-01473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01473-z

Keywords

Navigation