Skip to main content
Log in

Nozzle exit conditions and the heat transfer in non-swirling and weakly swirling turbulent impinging jets

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Investigations have been conducted into turbulent impinging jets but the exact flow dynamics and mechanisms leading to the observed heat transfer distributions at the impingement plane remain outstanding. In particular, use of different swirl generators (vanes, twisted inserts) means the role of varying inflow conditions (at the nozzle exit plane x/D = 0) should be studied to resolve its role on the observed convective heat transfer trends. The present paper studies axisymmetric turbulent weakly swirling (S = 0.31) jets (D = 40 mm) impinging onto a heated plate. Parameters varied include inflow conditions and the effects of impingement distance (H/D = 2, 4, and 6). The Reynolds Averaged Navier Stokes (RANS) equations are used to model the jets using the k-kl-ω turbulence model, which is benchmarked against other models. Three azimuthal (<w>) velocity profiles at a Reynolds (Re) number of 24,600 are used at the nozzle exit plane: Uniform (UP), Solid Body Rotation (SBR), and Parabolic Profiles (PP). The start of the wall jet region, designated through elevated levels of turbulent kinetic energy correlates well with the widely observed first peak in Nu distribution. This is however extremely sensitive to the imposition of any swirl, with the application of even weak swirl (S = 0.31) minimally modifying flow dynamics (in the upstream jet region) and leading to recirculation zones stabilized at the impingement plane. This occurs in near-field impingement (H/D) for some inflow conditions (S031-UP), but not others thereby highlighting the significance varied nozzle and swirl generation methods on trends observed in the literature. The imposition of elevated levels of turbulence at the nozzle inflow (x/D = 0) appreciably modifies the heat transfer distribution, particularly in far-field impingement (H/D = 6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Ap :

Area of the jet exit plane or on the impingement surface (Experimental 0.06 m2)

Cμ :

Model constant (0.09)

Cp :

Pressure coefficient

cp:

Fluid heat capacity(J/K)

D:

Nozzle diameter at the exit plane

DL :

Anisotropic dissipation (kL)

DT :

Anisotropic dissipation (kT)

e:

Enthalpy (J/kg)

fW :

Inviscid near-wall damping function

fω :

Boundary layer wake term damping function

H:

Nozzle-to-plate distance

h:

Heat transfer coefficient

k:

Turbulent kinetic energy (J/kg)

Keff :

Effective thermal conductivity

kL :

Laminar kinetic energy

kT :

Turbulent kinetic energy(W/m2.k)

l:

Turbulent length scale (0.07D)

Nu(r):

Radially distributed Nusselt number

Nu0 :

Stagnation point Nusselt number

NuA :

Spatially averaged Nusselt number

P:

Pressure

P∞:

Ambient pressure

PKL :

Production of laminar kinetic energy by mean strain rate

PKT :

Production of turbulent kinetic energy by mean strain rate

Prt :

Turbulent Prandtl number

r:

Radial direction coordinate

RBP :

Bypass transition production term

Re:

Reynolds number

RNAT :

Natural transition production term

q:

Heat flux (Watts/m2)

S:

Swirl number

T:

Temperature (K)

t:

Time (s)

Tref :

Reference temperature (K)

Tw :

Heat wall temperature (K)

U:

Axial velocity (m/s)

Ub :

Bulk axial velocity at the nozzle exit plane (m/s)

ui,j :

Axial, radial and azimuthal velocity component (m/s)

u :

Axial, radial and azimuthal velocity fluctuations (m/s)

Wb :

Bulk tangential velocity at the nozzle exit plane (m/s)

xi,j :

Axial, radial and azimuthal coordinate

ρ:

Density

μ:

Dynamic viscosity

ν:

Kinematic viscosity

λ:

Thermal conductivity of the bulk air

δij :

Dirac’s delta

ω:

Specific rate of dissipation

ε:

Rate of dissipation

σA :

Standard deviation

αT :

Effective diffusivity for turbulence dependent variables

PP:

Parabolic tangential velocity profile

SBR:

Solid-body-rotation type tangential velocity profile

UP:

Uniform (top-hat) tangential velocity profile

SST:

Shear Stress Transport

RNG:

Re-Normalisation Group

RANS:

Reynolds-averaged Navier–Stokes

LES:

Large Eddy Simulation

DNS:

Direct Numerical Simulation

References

  1. Fairweather M, Hargrave G (2002) Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp Fluids 33:464–471. https://doi.org/10.1007/s00348-002-0479-7

    Article  Google Scholar 

  2. Zuckerman N, Lior N (2005) Impingement heat transfer: correlations and numerical modeling. J Heat Transf 127:544. https://doi.org/10.1115/1.1861921

    Article  Google Scholar 

  3. Ghaffari O, Solovitz SA, Ikhlaq M, Arik M (2016) An investigation into flow and heat transfer of an ultrasonic micro-blower device for electronics cooling applications. Appl Therm Eng 106:881–889. https://doi.org/10.1016/j.applthermaleng.2016.06.094

    Article  Google Scholar 

  4. Kurnia JC, Sasmito AP, Tong W, Mujumdar AS (2013) Energy-efficient thermal drying using impinging-jets with time-varying heat input – a computational study. J Food Eng 114:269–277. https://doi.org/10.1016/j.jfoodeng.2012.08.029

    Article  Google Scholar 

  5. Ikhlaq M, Ghaffari O, Arik M (2016) Predicting heat transfer for low- and high-frequency central-orifice synthetic jets. IEEE Trans Components, Packag Manuf Technol 6:586–595. https://doi.org/10.1109/TCPMT.2016.2523809

    Article  Google Scholar 

  6. Ianiro A, Cardone G (2012) Heat transfer rate and uniformity in multichannel swirling impinging jets. Appl Therm Eng 49:89–98. https://doi.org/10.1016/j.applthermaleng.2011.10.018

    Article  Google Scholar 

  7. Uddin N, Neumann SO, Weigand B (2013) LES simulations of an impinging jet: on the origin of the second peak in the Nusselt number distribution. Int J Heat Mass Transf 57:356–368. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2012.10.052

    Article  Google Scholar 

  8. Dairay T, Fortuné V, Lamballais E, Brizzi L-E (2015) Direct numerical simulation of a turbulent jet impinging on a heated wall. J Fluid Mech 764:362–394. https://doi.org/10.1017/jfm.2014.715

    Article  Google Scholar 

  9. Zuckerman N, Lior N, Summary I (2006) Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Transf 39:565–631. https://doi.org/10.1016/S0065-2717(06)39006-5

    Article  Google Scholar 

  10. Ahmed ZU, Al-Abdeli YM, Matthews MT (2015) The effect of inflow conditions on the development of non-swirling versus swirling impinging turbulent jets. Comput Fluids 118:255–273. https://doi.org/10.1016/j.compfluid.2015.06.024

    Article  Google Scholar 

  11. O’Donovan TS, Murray DB (2007) Jet impingement heat transfer - part I: mean and root-mean-square heat transfer and velocity distributions. Int J Heat Mass Transf 50:3291–3301. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.044

    Article  MATH  Google Scholar 

  12. Ahmed ZU, Al-Abdeli YM, Guzzomi FG (2016) Heat transfer characteristics of swirling and non-swirling impinging turbulent jet. Int J Heat Mass Transf 102:991–1003. https://doi.org/10.1016/j.expthermflusci.2015.07.017

    Article  Google Scholar 

  13. Fairweather M, Hargrave GK (2002) Experimental investigation of an axisymmetric, impinging turbulent jet. 2. Scalar field. Exp Fluids 33:539–544. https://doi.org/10.1007/s00348-002-0480-1

    Article  Google Scholar 

  14. Baughn J, Shimizu S (1989) Heat transfer measurements from a surface with uniform heat flux and an impinging jet. J Heat Transf (Transactions ASME) 111:1988–1990. https://doi.org/10.1115/1.3250776

    Article  Google Scholar 

  15. Lytle D, Webb BW (1994) Air jet impingement heat transfer at low nozzle - plate spacings. Inl J Heal Mass Transf 31:1687–1697. https://doi.org/10.1016/0017-9310(94)90059-0

    Article  Google Scholar 

  16. Behnia M, Parneix S, Shabany Y, Durbin PA (1999) Numerical study of turbulent heat transfer in confined and unconfined impinging jets. Int J Heat Fluid Flow 20:1–9. https://doi.org/10.1016/S0142-727X(98)10040-1

    Article  Google Scholar 

  17. Cooper D, Jackson DC, Launder BE, Liao GX (1993) Impinging jet studies for turbulence model assessment-l. flow-field experiments. Int J Heat Mass Transf 36:2675–2684. https://doi.org/10.1016/S0017-9310(05)80204-2

    Article  Google Scholar 

  18. Lee J, Lee S-J (2000) The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. Int J Heat Mass Transf 43:555–575. https://doi.org/10.1016/S0017-9310(99)00167-2

    Article  MATH  Google Scholar 

  19. Baughn JW, Hechanova AE, Yan X (1991) An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet. J Heat Transf 113:1023–1025. https://doi.org/10.1115/1.2911197

    Article  Google Scholar 

  20. Katti V, Prabhu SV (2008) Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle. Int J Heat Mass Transf 51:4480–4495. https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.024

    Article  MATH  Google Scholar 

  21. Brown KJ, Persoons T, Murray DB (2010) Heat transfer characteristics of swirling impinging jets. In: 14th International Heat Transfer Conference, Volume 5. ASME, pp 657–665

  22. Abrantes JKJ, Azevedo L, Fernando L, Azevedo A (2006) Fluid flow characteristics of a swirl jet impinging on a flat plate. In: 13th Internationaal Symposium on Application of Laser Techniques to Fluid Mechanics. Lisbon, Portugal, pp 26–29

  23. Buchlin JM (2011) Convective heat rransfer in impinging- gas-jet arrangements. J Appl Fluid Mech 4:137–149

    Google Scholar 

  24. Ahmed ZU, Al-Abdeli YM, Guzzomi FG (2016) Corrections of dual-wire CTA data in turbulent swirling and non-swirling jets. Exp Thermal Fluid Sci 70:166–175. https://doi.org/10.1016/j.expthermflusci.2015.09.007

    Article  Google Scholar 

  25. Al-Abdeli YM, Masri AR (2015) Review of laboratory swirl burners and experiments for model validation. Exp Thermal Fluid Sci 69:178–196. https://doi.org/10.1016/j.expthermflusci.2015.07.023

    Article  Google Scholar 

  26. Ortega-Casanova J (2012) CFD and correlations of the heat transfer from a wall at constant temperature to an impinging swirling jet. Int J Heat Mass Transf 55:5836–5845. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.079

    Article  Google Scholar 

  27. Yang HQ, Kim T, Lu TJ, Ichimiya K (2010) Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling. Int J Heat Mass Transf 53:4092–4100. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.029

    Article  Google Scholar 

  28. Hee Lee D, Youl Won S, Taek Kim Y, Suk Chung Y (2002) Turbulent heat transfer from a flat surface to a swirling round impinging jet. Int J Heat Mass Transf 45:223–227. https://doi.org/10.1016/S0017-9310(01)00135-1

    Article  Google Scholar 

  29. Bakirci K, Bilen K (2007) Visualization of heat transfer for impinging swirl flow. Exp Thermal Fluid Sci 32:182–191. https://doi.org/10.1016/j.expthermflusci.2007.03.004

    Article  Google Scholar 

  30. Amini Y, Mokhtari M, Haghshenasfard M, Barzegar Gerdroodbary M (2015) Heat transfer of swirling impinging jets ejected from nozzles with twisted tapes utilizing CFD technique. Case Stud Therm Eng 6:104–115. https://doi.org/10.1016/j.csite.2015.08.001

    Article  Google Scholar 

  31. Wen M-Y, Jang K-J (2003) An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips. Int J Heat Mass Transf 46:4657–4667. https://doi.org/10.1016/S0017-9310(03)00302-8

    Article  Google Scholar 

  32. Yuan ZX, Chen YY, Jiang JG, Ma CF (2006) Swirling effect of jet impingement on heat transfer from a flat surface to CO2 stream. Exp Thermal Fluid Sci 31:55–60. https://doi.org/10.1016/j.expthermflusci.2005.12.007

    Article  Google Scholar 

  33. Al-Abdeli YM (2004) Experiments in turbulent swirling non-premixed flames and isothermal flows. In: School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney. p 295

  34. Toh IK, Honnery D, Soria J (2010) Axial plus tangential entry swirling jet. Exp Fluids 48:309–325. https://doi.org/10.1007/s00348-009-0734-2

    Article  Google Scholar 

  35. Al-Abdeli YM, Masri AR (2003) Recirculation and flowfield regimes of unconfined non-reacting swirling flows. Exp Thermal Fluid Sci 27:655–665. https://doi.org/10.1016/S0894-1777(02)00280-7

    Article  Google Scholar 

  36. Al-Abdeli YM, Masri AR (2004) Precession and recirculation in turbulent swirling isothermal jets. Combust Sci Technol 176:645–665. https://doi.org/10.1080/00102200490427883

    Article  Google Scholar 

  37. Guo B, Fletcher D, Rojas Marquez G, Al-Abdeli Y, Starner S, Masri A (2003) Rans calculations and measurements of instabilities in swirl-stabilised jets and flames. In: Australian Symposium on Combustion & the 8th Australian Flame Days. Melbourne: Monash University

  38. Al-Abdeli YM, Masri AR, Marquez GR, Starner SH (2006) Time-varying behaviour of turbulent swirling nonpremixed flames. Combust Flame 146:200–214. https://doi.org/10.1016/j.combustflame.2006.03.009

    Article  Google Scholar 

  39. Al-Abdeli YM, Masri AR (2007) Turbulent swirling natural gas flames : stability characteristics, unsteady behavior and vortex breakdown. Combust Sci Technol 179:207–225. https://doi.org/10.1080/00102200600809092

    Article  Google Scholar 

  40. Sunden B, Larocque J (2005) Simulation of heat transfer from swirling impinging jets. In: Volume 3: Turbo Expo 2005, Parts A and B. ASME, pp 765–772

  41. Shuja SZ, Yilbas BS, Rashid M (2003) Confined swirling jet impingement onto an adiabatic wall. Int J Heat Mass Transf 46:2947–2955. https://doi.org/10.1016/S0017-9310(03)00073-5

    Article  MATH  Google Scholar 

  42. Ianiro A, Violato D, Scarano F, Cardone G (2012) Three dimensional features in swirling impinging jets. In: 15th International Symposium on Flow Visualization. June 25–28, 2012, Minsk, Belarus

  43. Huang L, El-Genk MS (1998) Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. Int J Heat Mass Transf 41:583–600. https://doi.org/10.1016/S0017-9310(97)00123-3

    Article  Google Scholar 

  44. Angioletti M, Nino E, Ruocco G (2005) CFD turbulent modelling of jet impingement and its validation by particle image velocimetry and mass transfer measurements. Int J Therm Sci 44:349–356. https://doi.org/10.1016/J.IJTHERMALSCI.2004.11.010

    Article  Google Scholar 

  45. Isman MK, Pulat E, Etemoglu AB, Can M (2008) Numerical investigation of turbulent impinging jet cooling of a constant heat flux surface. Numer Heat Transf Part A Appl 53:1109–1132. https://doi.org/10.1080/10407780701790078

    Article  Google Scholar 

  46. Pulat E, Kemal Isman M, Burak Etemoglu A, Can M (2011) Effect of turbulence models and near-wall modeling approaches on numerical results in impingement heat transfer. Numer Heat Transf Part B Fundam 606:486–519. https://doi.org/10.1080/10407790.2011.630956

    Article  Google Scholar 

  47. Ramezanpour A, Mirzaee I, Firth D, Shirvani H (2007) A numerical heat transfer study of slot jet impinging on an inclined plate. Int J Numer Methods Heat Fluid Flow 17:661–676

    Article  Google Scholar 

  48. Dianat M, Fairweather M, Jones WP (1996) Predictions of axisymmetric and two-dimensional impinging turbulent jets. Int J Heat Fluid Flow 17:530–538. https://doi.org/10.1016/S0142-727X(96)00076-8

    Article  MATH  Google Scholar 

  49. Behnia M, Parneix S, Durbin PA (1998) Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate. Int J Heat Mass Transf 41:1845–1855. https://doi.org/10.1016/S0017-9310(97)00254-8

    Article  Google Scholar 

  50. Sagot B, Antonini G, Christgen A, Buron F (2008) Jet impingement heat transfer on a flat plate at a constant wall temperature. Int J Therm Sci 47:1610–1619. https://doi.org/10.1016/J.IJTHERMALSCI.2007.10.020

    Article  Google Scholar 

  51. Craft TJ, Graham LJW, Launder BE (1993) Impinging jet studies for turbulence model assessment-II. An examination of the performance of four turbulence models. Int J Heat Mass Transf 36:2685–2697. https://doi.org/10.1016/S0017-9310(05)80205-4

    Article  Google Scholar 

  52. Jaramillo JE, Pérez-Segarra CD, Rodriguez I, Oliva A (2008) Numerical study of plane and round impinging jets using RANS models. Numer Heat Transf Part B Fundam 543:213–237. https://doi.org/10.1080/10407790802289938

    Article  Google Scholar 

  53. Oguic R, Poncet S, Viazzo S (2016) High-order direct numerical simulations of a turbulent round impinging jet onto a rotating heated disk in a highly confined cavity. Int J Heat Fluid Flow 61:366–378. https://doi.org/10.1016/j.ijheatfluidflow.2016.05.013

    Article  Google Scholar 

  54. Xu L, Lan J, Ma Y et al (2017) Numerical study on heat transfer by swirling impinging jets issuing from a screw-thread nozzle. Int J Heat Mass Transf 115:232–237. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.053

    Article  Google Scholar 

  55. Ortega-Casanova J, Granados-Ortiz FJ (2014) Numerical simulation of the heat transfer from a heated plate with surface variations to an impinging jet. Int J Heat Mass Transf 76:128–143. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.022

    Article  Google Scholar 

  56. Ortega-Casanova J, Molina-Gonzalez F (2017) Axisymmetric numerical investigation of the heat transfer enhancement from a heated plate to an impinging turbulent axial jet via small vortex generators. Int J Heat Mass Transf 106:183–194. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.064

    Article  Google Scholar 

  57. Ortega-Casanova J, Castillo-Sanchez SI (2017) On using axisymmetric turbulent impinging jets swirling as Burger’s vortex for heat transfer applications. Single and multi-objective vortex parameters optimization. Appl Therm Eng 121:103–114. https://doi.org/10.1016/j.applthermaleng.2017.04.031

    Article  Google Scholar 

  58. Ahmed ZU, Al-Abdeli YM, Guzzomi FG (2017) Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. Int J Therm Sci 114:241–256. https://doi.org/10.1016/j.ijthermalsci.2016.12.013

    Article  Google Scholar 

  59. Tummers MJ, Jacobse J, Voorbrood SGJ (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54:4939–4948. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.007

    Article  Google Scholar 

  60. ANSYS Inc. (2015). ANSYS Fluent 16.2: User’s Guide

  61. Fürst J, Příhoda J, Straka P (2013) Numerical simulation of transitional flows. Computing 95:163–182. https://doi.org/10.1007/s00607-012-0266-0

    Article  MathSciNet  Google Scholar 

  62. Walters DK, Cokljat D (2008) A three-equation eddy-viscosity model for Reynolds-averaged Navier–stokes simulations of transitional flow. J Fluids Eng 130:121401. https://doi.org/10.1115/1.2979230

    Article  Google Scholar 

  63. Celik IB, Ghia U, Roache PJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng 130:078001. https://doi.org/10.1115/1.2960953

    Article  Google Scholar 

  64. Wang T, Dhanasekaran TS (2008) Calibration of CFD model for mist/steam impinging jets cooling. In: Volume 4: Heat Transfer, Parts A and B. ASME, pp 703–716

  65. Ahmed ZU (2016) An experimental and numerical study of surface interactions in turbulent swirling jets. Edith Cowan University, PhD Dissertation

  66. Ahmed ZU, Al-Abdeli YM, Guzzomi FG (2015) Impingement pressure characteristics of swirling and non-swirling turbulent jets. Exp Thermal Fluid Sci 68:722–732. https://doi.org/10.1016/j.expthermflusci.2015.07.017

    Article  Google Scholar 

Download references

Acknowledgements

This research is facilitated Edith Cowan University (ECU) research infrastructure. The corresponding author acknowledges ECU for awarding him an Edith Cowan University Postgraduate Research Scholarship (ECUPRS) to pursue a PhD research program. Dr. Zahir U Ahmed is also thanked for his advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ikhlaq.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikhlaq, M., Al-Abdeli, Y.M. & Khiadani, M. Nozzle exit conditions and the heat transfer in non-swirling and weakly swirling turbulent impinging jets. Heat Mass Transfer 56, 269–290 (2020). https://doi.org/10.1007/s00231-019-02710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02710-1

Navigation