Skip to main content

Advertisement

Log in

Study of hybrid alginate/gelatin hydrogel-incorporated niosomal Aloe vera capable of sustained release of Aloe vera as potential skin wound dressing

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nowadays, wound dressings serve as advanced skin products, which mainly aim to accelerate the wound healing process. The wound dressings with a potential of localized and prolonged release of therapeutic agents have attracted tremendous attention. In this study, synthesis of a sustained release of niosomal Aloe vera (AV) loaded in alginate/gelatin (AG) hybrid hydrogel is aimed at improving skin regeneration as wound dressing. For this purpose, AV-loaded niosomes are synthesized and incorporated in the hybrid AG hydrogel. The size and polydispersity index (PdI) of niosomes, AV entrapment efficacy and AV in vitro release are characterized. In addition, the hydrogel characteristic, such as swelling ratio, degradation behavior and mechanical property, are studied. MTT assay is utilized to evaluate the effect of AV incorporation and release on the proliferation of fibroblast cells. Results demonstrate that size, PdI and EE% of AV-loaded niosomes are 270.080 nm, 0.108 and 42.039 ± 4.090%, respectively, and in vitro release of AV is about 20% after 7 days. AG hybrid hydrogel loaded by niosomal AV shows an extended sustained release manner, where its swelling ratio and percentage of degradation are 60 wt% after 72 h and 70 wt% after 6 days, respectively. The average Young’s modulus of the hybrid hydrogel is measured around 12.64 ± 1.3 kPa, which seems suitable as a wound dressing. Finally, MTT assay confesses an increased fibroblast proliferation in the presence of AV, particularly in the niosomal AV-loaded hydrogel. Concludingly, alginate/gelation hybrid hydrogel incorporated with niosomal AV, with sustained release potential can be suggested as a promising candidate for wound dressing applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mescher AL (2010) Junqueira’s basic histology: text and atlas, vol 12. McGraw-Hill Medical, New York

    Google Scholar 

  2. Kamel RA, Ong JF, Junker JPE (2013) Tissue engineering of skin. J Am Coll Surg 217(3):533–555

    PubMed  Google Scholar 

  3. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    CAS  Google Scholar 

  4. Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18(1):18–23

    Google Scholar 

  5. Murakami K, Aoki H, Nakamura S, S-i Nakamura, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31(1):83–90

    CAS  PubMed  Google Scholar 

  6. Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Tech Equine Pract 3(2):148–163

    Google Scholar 

  7. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  8. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    CAS  PubMed  Google Scholar 

  9. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Balakrishnan B, Mohanty M, Umashankar P, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26(32):6335–6342

    CAS  PubMed  Google Scholar 

  11. Dong Z, Wang Q, Du Y (2006) Alginate/gelatin blend films and their properties for drug controlled release. J Membr Sci 280(1):37–44

    CAS  Google Scholar 

  12. Shin H, Olsen BD, Khademhosseini A (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33(11):3143–3152

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P (2009) Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J Biomed Mater Res A 91(2):447–453

    PubMed  Google Scholar 

  14. Almeida PF, Almeida A (2004) Cross-linked alginate–gelatine beads: a new matrix for controlled release of pindolol. J Control Release 97(3):431–439

    PubMed  Google Scholar 

  15. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS (1999) Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin–alginate sponge. Biomaterials 20(5):409–417

    CAS  PubMed  Google Scholar 

  16. Majewska I, Gendaszewska-Darmach E (2011) Proangiogenic activity of plant extracts in accelerating wound healing—a new face of old phytomedicines. Acta Biochim Pol 58(4):449–460

    CAS  PubMed  Google Scholar 

  17. Benson KF, Newman RA, Jensen GS (2015) Antioxidant, anti-inflammatory, anti-apoptotic, and skin regenerative properties of an Aloe vera-based extract of Nerium oleander leaves (NAE-8®). Clin Cosmet Investig Dermatol 8:239

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Abdullah KM, Abdullah A, Johnson ML, Bilski JJ, Petry K, Redmer DA, Reynolds LP, Grazul-Bilska AT (2003) Effects of Aloe vera on gap junctional intercellular communication and proliferation of human diabetic and nondiabetic skin fibroblasts. J Altern Complement Med 9(5):711–718

    PubMed  Google Scholar 

  19. Choi SW, Son BW, Son YS, Park YI, Lee SK, Chung MH (2001) The wound-healing effect of a glycoprotein fraction isolated from Aloe vera. Br J Dermatol 145(4):535–545

    CAS  PubMed  Google Scholar 

  20. Hashemi SA, Madani SA, Abediankenari S (2015) The review on properties of Aloe vera in healing of cutaneous wounds. Biomed Res Int 2015:714216

    PubMed  PubMed Central  Google Scholar 

  21. Atiba A, Ueno H, Uzuka Y (2011) The effect of Aloe vera oral administration on cutaneous wound healing in type 2 diabetic rats. J Vet Med Sci 73(5):583–589

    PubMed  Google Scholar 

  22. Atiba A, Nishimura M, Kakinuma S, Hiraoka T, Goryo M, Shimada Y, Ueno H, Uzuka Y (2011) Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production. Am J Surg 201(6):809–818

    CAS  PubMed  Google Scholar 

  23. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392

    CAS  PubMed  Google Scholar 

  24. Leask A (2007) TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74(2):207–212

    CAS  PubMed  Google Scholar 

  25. Varga J, Rosenbloom J, Jimenez S (1987) Transforming growth factor β (TGFβ) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 247(3):597–604

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hajian M, Mahmoodi M, Imani R (2017) In vitro assessment of poly (vinyl alcohol) film incorporating Aloe vera for potential application as a wound dressing. J Macromol Sci B 56(7):435–450

    CAS  Google Scholar 

  27. Suganya S, Venugopal J, Mary SA, Ramakrishna S, Lakshmi B, Dev VG (2014) Aloe vera incorporated biomimetic nanofibrous scaffold: a regenerative approach for skin tissue engineering. Iran Polym J 23(3):237–248

    CAS  Google Scholar 

  28. Jithendra P, Rajam AM, Kalaivani T, Mandal AB, Rose C (2013) Preparation and characterization of Aloe vera blended collagen–chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5(15):7291–7298

    CAS  PubMed  Google Scholar 

  29. Salehi M, Farzamfar S, Bastami F, Tajerian R (2016) Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of Aloe vera gel for skin tissue engineering. Biomed Eng Appl Basis Commun 28(05):1650035

    CAS  Google Scholar 

  30. Bourke SL, Al-Khalili M, Briggs T, Michniak BB, Kohn J, Poole-Warren LA (2003) A photo-crosslinked poly (vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications. AAPS Pharmsci 5(4):101–111

    PubMed Central  Google Scholar 

  31. Buckley A, Davidson JM, Kamerath CD, Wolt TB, Woodward SC (1985) Sustained release of epidermal growth factor accelerates wound repair. Proc Natl Acad Sci USA 82(21):7340–7344

    CAS  PubMed  Google Scholar 

  32. Han F, Dong Y, Song A, Yin R, Li S (2014) Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride. Appl Surf Sci 311:626–634

    CAS  Google Scholar 

  33. Jannesari M, Varshosaz J, Morshed M, Zamani M (2011) Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomed 6:993

    CAS  Google Scholar 

  34. Kim J-H, Kim T-H, Kang MS, Kim H-W (2016) Angiogenic effects of collagen/mesoporous nanoparticle composite scaffold delivering VEGF165. Biomed Res Int 2016:9676934

    PubMed  PubMed Central  Google Scholar 

  35. Moghassemi S, Hadjizadeh A, Hakamivala A, Omidfar K (2017) Growth factor-loaded nano-niosomal gel formulation and characterization. AAPS PharmSciTech 18(1):34–41

    CAS  PubMed  Google Scholar 

  36. Moghassemi S, Hadjizadeh A (2014) Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 185:22–36

    CAS  PubMed  Google Scholar 

  37. Yazdi Rouholamini SE, Moghassemi S, Maharat Z, Hakamivala A, Kashanian S, Omidfar K (2018) Effect of silibinin-loaded nano-niosomal coated with trimethyl chitosan on miRNAs expression in 2D and 3D models of T47D breast cancer cell line. Artif Cells Nanomed Biotechnol 46(3):524–535

    CAS  PubMed  Google Scholar 

  38. Moghassemi S, Parnian E, Hakamivala A, Darzianiazizi M, Vardanjani MM, Kashanian S, Larijani B, Omidfar K (2015) Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Mater Sci Eng C 46:333–340

    CAS  Google Scholar 

  39. Luo Y, Lode A, Akkineni AR, Gelinsky M (2015) Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv 5(54):43480–43488

    CAS  Google Scholar 

  40. Saarai A, Kasparkova V, Sedlacek T, Sáha P (2011) A comparative study of crosslinked sodium alginate/gelatin hydrogels for wound dressing. In: Recent researches in geography, geology, energy, environment and biomedicine. Proceedings of the 4th WSEAS international conference on EMESEG, 14 July 2011, vol 11. pp 384–389

  41. Chen YX, Cain B, Soman P (2017) Gelatin methacrylate–alginate hydrogel with tunable viscoelastic properties. AIMS Mater Sci 4(2):363–369

    CAS  Google Scholar 

  42. Kong QS, Yu ZS, Ji Q, Xia YZ (2009) Electrospinning of sodium alginate with poly (ethylene oxide), gelatin and nanometer silver colloid. In: Materials science forum. Trans Tech Publications, pp 1188–1191

  43. Lao L, Wang Y, Zhu Y, Zhang Y, Gao C (2011) Poly (lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med 22(8):1873–1884

    CAS  PubMed  Google Scholar 

  44. Waddad AY, Abbad S, Yu F, Munyendo WL, Wang J, Lv H, Zhou J (2013) Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int J Pharm 456(2):446–458

    CAS  PubMed  Google Scholar 

  45. Gurrapu A, Jukanti R, Bobbala SR, Kanuganti S, Jeevana JB (2012) Improved oral delivery of valsartan from maltodextrin based proniosome powders. Adv Powder Technol 23(5):583–590

    CAS  Google Scholar 

  46. Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, Kim D-D, Kim JS, Yoo BK, Choi H-G (2009) Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm 377(1):1–8

    CAS  PubMed  Google Scholar 

  47. Firthouse PM, Halith SM, Wahab S, Sirajudeen M, Mohideen SK (2011) Formulation and evaluation of miconazole niosomes. Int J PharmTech Res 3(2):1019–1022

    Google Scholar 

  48. Moghassemi S, Hadjizadeh A, Omidfar K (2016) Formulation and characterization of bovine serum albumin-loaded niosome. AAPS PharmSciTech 18:1–7

    Google Scholar 

  49. Bishop S, Walker M, Rogers A, Chen W (2003) Importance of moisture balance at the wound-dressing interface. J Wound Care 12(4):125–128

    CAS  PubMed  Google Scholar 

  50. Fan L, Du Y, Huang R, Wang Q, Wang X, Zhang L (2005) Preparation and characterization of alginate/gelatin blend fibers. J Appl Polym Sci 96(5):1625–1629

    CAS  Google Scholar 

  51. Jachowicz J, McMullen R, Prettypaul D (2007) Indentometric analysis of in vivo skin and comparison with artificial skin models. Skin Res Technol 13(3):299–309

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mostafa Rabbani and Masoud Babaei for their assistance in providing some materials for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rana Imani or Nabiollah Abolfathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadashzadeh, A., Imani, R., Moghassemi, S. et al. Study of hybrid alginate/gelatin hydrogel-incorporated niosomal Aloe vera capable of sustained release of Aloe vera as potential skin wound dressing. Polym. Bull. 77, 387–403 (2020). https://doi.org/10.1007/s00289-019-02753-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02753-8

Keywords

Navigation