Skip to main content
Log in

Tunable wicking behavior via titanium oxide embedded in polyacrylonitrile nanofiber strings of yarn

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect(s) of TiO2 nanoparticles on the vertical wicking behavior observed in electrospun polyacrylonitrile (PAN) nanofiber strings of yarn was investigated in this study. The capillary flow was measured in composite nanofiber strings of yarn by means of the image analysis of the rise of colored liquid soaked up in the strings of yarn; the height of liquid rise was determined as a function of time. The kinetics of capillary rise follows the Lucas–Washburn’s equation. The results obtained from the experimental design showed that the rate coefficient of the capillary rise was influenced by TiO2 nanoparticles more than the twist level in nanofiber strings of yarn. For various hot-stretching ratios, the rate of capillary rise decreased with increasing the number of TiO2 nanoparticles and the level of yarn twist. This decreasing trend was more pronounced at higher levels of yarn twist. To find how capillary behavior changed with the release of nanoparticles, the wicking mechanisms were measured at different concentrations of TiO2 nanoparticles in capillary liquid. When TiO2 nanoparticles were used in capillary liquid, they immediately filled the spaces between nanofibers in yarn and the liquid could not rise any more. The present study indicated that the wicking behavior of composite nanofiber strings of yarn was tunable provided that appropriate constructive factors, that is to say, the number of TiO2 nanoparticles and the level of nanofiber yarn twist, were chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Judeinstein P, Sanchez C (1996) Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem 6:511–525

    CAS  Google Scholar 

  2. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  3. Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol 167:283–293

    CAS  Google Scholar 

  4. Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560

    CAS  Google Scholar 

  5. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    CAS  Google Scholar 

  6. Liu G, Wang L, Yang HG, Cheng H-M, Lu GQM (2010) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem 20:831–843

    Google Scholar 

  7. Bolis V, Busco C, Ciarletta M, Distasi C, Erriquez J, Fenoglio I, Livraghi S, Morel S (2012) Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. J Colloid Interface Sci 369:28–39

    CAS  PubMed  Google Scholar 

  8. Park JY, Kim SS (2009) Effects of processing parameters on the synthesis of TiO2 nanofibers by electrospinning. Met Mater Int 15:95–99

    CAS  Google Scholar 

  9. Kuchi C, Harish G, Reddy PS (2018) Effect of polymer concentration, needle diameter and annealing temperature on TiO2-PVP composite nanofibers synthesized by electrospinning technique. Ceram Int 44:5266–5272

    CAS  Google Scholar 

  10. Li D, Pan C (2012) Fabrication and characterization of electrospun TiO2/CuS micro–nano-scaled composite fibers. Prog Nat Sci: Mater Int 22:59–63

    Google Scholar 

  11. Boyadjiev SI, Kéri O, Bárdos P, Firkala T, Gáber F, Nagy ZK, Baji Z, Takács M, Szilágyi IM (2017) TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing. Appl Surf Sci 424:190–197

    CAS  Google Scholar 

  12. Wang L, Ali J, Zhang C, Mailhot G, Pan G (2017) Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.12.057

    Article  Google Scholar 

  13. Huang F, Motealleh B, Zheng W, Janish MT, Carter CB, Cornelius CJ (2018) Electrospinning amorphous SiO2-TiO2 and TiO2 nanofibers using sol-gel chemistry and its thermal conversion into anatase and rutile. Ceram Int 44:4577–4585

    CAS  Google Scholar 

  14. Bakr ZH, Wali Q, Ismail J, Elumalai NK, Uddin A, Jose R (2018) Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2-TiO2 composite nanofibers for dye-sensitized solar cells. Electrochim Acta 263:524–532

    CAS  Google Scholar 

  15. Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33

    CAS  Google Scholar 

  16. Monaenkova D, Kornev KG (2010) Elastocapillarity: stress transfer through fibrous probes in wicking experiments. J Colloid Interface Sci 348:240–249

    CAS  PubMed  Google Scholar 

  17. Li Y, Joo CW (2012) Pore structure and liquid behavior of nonwovens composed of nanosized fibers by conjugate spinning. J Appl Polym Sci 126:E252–E259

    CAS  Google Scholar 

  18. Hajiani F, Ghareaghaji A, Jeddi AA, Amirshahi S, Mazaheri F (2014) Wicking properties of polyamide 66 twisted nanofiber yarn by tracing the color alteration in yarn structure. Fibers Polym 15:1966–1976

    CAS  Google Scholar 

  19. Zhmud B, Tiberg F, Hallstensson K (2000) Dynamics of capillary rise. J Colloid Interface Sci 228:263–269

    CAS  PubMed  Google Scholar 

  20. Doakhan S, Hosseini RS, Gharah AA, Mortazavi SM (2007) Capillary rise in core-spun yarn. IRAN Polym J 16:397–408

    Google Scholar 

  21. Das B, Das A, Kothari V, Fanguiero R, Araujo MD (2009) Moisture flow through blended fabrics–effect of hydrophilicity. J Eng Fabr Fibers (JEFF) 4:20–28. https://doi.org/10.1177/155892500900400405

    Article  Google Scholar 

  22. Kissa E (1996) Wetting and wicking. Text Res J 66:660–668

    CAS  Google Scholar 

  23. Perwuelz A, Mondon P, Caze C (2000) Experimental study of capillary flow in yarns. Text Res J 70:333–339

    CAS  Google Scholar 

  24. Perwuelz A, Casetta M, Caze C (2001) Liquid organisation during capillary rise in yarns—influence of yarn torsion. Polym Test 20:553–561

    CAS  Google Scholar 

  25. Zhong W, Ding X, Tang Z (2001) Modeling and analyzing liquid wetting in fibrous assemblies. Text Res J 71:762–766

    CAS  Google Scholar 

  26. Lee MW, An S, Joshi B, Latthe SS, Yoon SS (2013) Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers. ACS Appl Mater Interfaces 5:1232–1239

    CAS  PubMed  Google Scholar 

  27. Babar AA, Wang X, Iqbal N, Yu J, Ding B (2017) Tailoring differential moisture transfer performance of nonwoven/polyacrylonitrile-SiO2 nanofiber composite membranes. Adv Mater Interfaces 4:1700062. https://doi.org/10.1002/admi.201700062

    Google Scholar 

  28. Lee E-J, An AK, Hadi P, Lee S, Woo YC, Shon HK (2017) Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation. J Membr Sci 524:712–720

    CAS  Google Scholar 

  29. Yang S, Lei P, Shan Y, Zhang D (2018) Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane. Appl Surf Sci 435:832–840

    CAS  Google Scholar 

  30. De Schoenmaker B, Van der Schueren L, De Vrieze S, Westbroek P, De Clerck K (2011) Wicking properties of various polyamide nanofibrous structures with an optimized method. J Appl Polym Sci 120:305–310

    Google Scholar 

  31. Jad MSM, Ravandi SAH, Tavanai H, Sanatgar RH (2011) Wicking phenomenon in polyacrylonitrile nanofiber yarn. Fibers Polym 12:801

    CAS  Google Scholar 

  32. Smit E, Bűttner U, Sanderson RD (2005) Continuous yarns from electrospun fibers. Polymer 46:2419–2423

    CAS  Google Scholar 

  33. Wei L, Qin X (2016) Nanofiber bundles and nanofiber yarn device and their mechanical properties: a review. Text Res J 86:1885–1898

    CAS  Google Scholar 

  34. Teo W-E, Inai R, Ramakrishna S (2011) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater 12:013002

    PubMed  PubMed Central  Google Scholar 

  35. Lee S, Obendorf SK (2012) Statistical modeling of water vapor transport through woven fabrics. Text Res J 82:211–219

    CAS  Google Scholar 

  36. Mullins BJ, Braddock RD (2012) Capillary rise in porous, fibrous media during liquid immersion. Int J Heat Mass Transf 55:6222–6230

    Google Scholar 

  37. Hwa Hong K, Jin Kang T (2006) Hydraulic permeabilities of PET and nylon 6 electrospun fiber webs. J Appl Polym Sci 100:167–177

    Google Scholar 

  38. Glatting G, Kletting P, Reske SN, Hohl K, Ring C (2007) Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys 34:4285–4292. https://doi.org/10.1118/1.2794176

    Article  CAS  PubMed  Google Scholar 

  39. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, vol 705. Wiley, Hoboken

    Google Scholar 

  40. Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53:1466–1467

    CAS  Google Scholar 

  41. Mittal KL (2006) Contact angle, wettability and adhesion, vol 4. CRC Press, Boca Raton

    Google Scholar 

  42. Yang C, Tartaglino U, Persson B (2006) Influence of surface roughness on superhydrophobicity. Phys Rev Lett 97:116103

    CAS  PubMed  Google Scholar 

  43. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    CAS  Google Scholar 

  44. Ganesh VA, Ranganath AS, Baji A, Raut HK, Sahay R, Ramakrishna S (2017) Hierarchical structured electrospun nanofibers for improved fog harvesting applications. Macromol Mater Eng 302:1600387. https://doi.org/10.1002/mame.201600387

    Article  CAS  Google Scholar 

  45. Almasian A, Fard GC, Mirjalili M, Gashti MP (2018) Fluorinated-PAN nanofibers: preparation, optimization, characterization and fog harvesting property. J Ind Eng Chem 62:146–155

    CAS  Google Scholar 

  46. Nyoni A, Brook D (2006) Wicking mechanisms in yarns—the key to fabric wicking performance. J Text Inst 97:119–128

    Google Scholar 

  47. Hearle JW, Grosberg P, Backer S (1969) Structural mechanics of fibers, yarns, and fabrics. Wiley-Interscience, Hoboken, New Jersey

    Google Scholar 

  48. Hosseini Ravandi S, Hassanabadi E, Tavanai H, Abuzade R (2012) Mechanical properties and morphology of hot drawn polyacrylonitrile nanofibrous yarn. J Appl Polym Sci 124:5002–5009

    CAS  Google Scholar 

  49. Valipouri A, Gharehaghaji AA, Ravandi SAH, Dabirian F (2015) Study of capillary rise in biodegradable porous poly (l-lactic acid) electrospun nano/micro fiber yarns. J Ind Text 44:899–911

    CAS  Google Scholar 

  50. Fashandi H, Ghomi AR (2017) Developing breathable double-layered fibrous membranes equipped with water pulling mechanism toward clothing with enhanced comfort. Adv Eng Mater 19:1600863. https://doi.org/10.1002/adem.201600863

    Article  CAS  Google Scholar 

  51. Wang X, Huang Z, Miao D, Zhao J, Yu J, Ding B (2019) Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano 13:1060–1070

    CAS  PubMed  Google Scholar 

  52. Wu J, Zhou H, Wang H, Shao H, Yan G, Lin T (2019) Novel water harvesting fibrous membranes with directional water transport capability. Adv Mater Interfaces 6:1801529. https://doi.org/10.1002/admi.201801529

    Article  CAS  Google Scholar 

  53. Jin S, Xin B, Zheng Y (2019) Preparation and characterization of polysulfone amide nanoyarns by the dynamic rotating electrospinning method. Text Res J 89:52–62

    CAS  Google Scholar 

  54. Dong Y, Kong J, Phua SL, Zhao C, Thomas NL, Lu X (2014) Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push–pull effects for moisture wicking. ACS Appl Mater Interfaces 6:14087–14095

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sadrjahani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini Ravandi, S.A., Mehrara, S., Sadrjahani, M. et al. Tunable wicking behavior via titanium oxide embedded in polyacrylonitrile nanofiber strings of yarn. Polym. Bull. 77, 307–322 (2020). https://doi.org/10.1007/s00289-019-02737-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02737-8

Navigation