Skip to main content
Log in

CFD and Experimental Investigation of Desulfurization of Rejected Electrolytic Manganese Metal in Electroslag Remelting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An innovative electroslag remelting furnace with a water-cooled electrode was introduced to recycle the rejected electrolytic manganese metal (EMM) scrap. To clarify the desulfurization process in the rejected EMM scrap, a transient three-dimensional comprehensive numerical model was elaborated. Using the magnetic potential vector approach, the respective electromagnetic fields were calculated via the Maxwell equations. The Lorentz force and the Joule heating fields were derived as phase distribution functions and interrelated via the momentum and energy conservation equations as source terms, respectively. The molten manganese metal droplet motion, as well as the fluctuation of the slag–metal interface, was described by the volume-of-fluid (VOF) approach. Besides, the solidification was modeled via the enthalpy-based technique. A thermodynamic module was established to estimate the sulfur mass transfer rate between the molten manganese metal and the molten slag. Furthermore, a factor related to the magnitude and frequency of the alternating current and the physical properties of the melt was introduced to include the electro-emulsification phenomenon. An experiment has been carried out with a commercial-scale ESR device. The predicted values of the slag temperature and sulfur content in the final manganese ingot were found to agree reasonably with the corresponding measured data. Under continuous melting of the rejected EMM scrap, molten manganese metal droplets are formed at the domain inlet, grow, and fall down. Highly conductive molten manganese metal droplets significantly change distributions of the current streamline, the Joule heating, and the Lorentz force around and within it. Moreover, droplets are inclined to rotate and move inside the mold. With the renewal of the slag–manganese interface, sulfur in the molten manganese metal is constantly transferred to the molten slag. With the applied current ranging from 3000 to 4000 A, the average sulfur content of the manganese ingot dropped from 0.0447 to 0.0291 pct, and thus, the desulfurization rate rose from 55.3 to 70.9 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Karen: J. Environ. Manage., 2009, vol. 90, pp. 3726-3740.

    Google Scholar 

  2. N. Duan, Z.G. Dan, F. Wang, C.X. Pan, C.B. Zhou, and L.H. Jiang: J. Clean Prod., 2011, vol. 19, pp. 2082-2087.

    Google Scholar 

  3. J.M. Lu, D. Dreisinger, and T. Glück: Hydrometallurgy, 2014, vol. 141, pp. 105-116.

    CAS  Google Scholar 

  4. B.I. Medovar and G.A. Boyko: Electroslag Technology, Springer-Verlag, New York, 1991, pp. 62-67.

    Google Scholar 

  5. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271–280.

    CAS  Google Scholar 

  6. Q. Wang, Z. He, G.Q. Li, B.K. Li, C.Y. Zhu, and P.J. Chen: Int. J. Heat Mass Transfer, 2017, vol. 104, pp. 943–951.

    CAS  Google Scholar 

  7. S.M. Kang, D.Y. Kim, J.S. Kim, and H.G. Lee: ISIJ Int., 2003, vol. 43, pp. 1683-1690.

    CAS  Google Scholar 

  8. J. Lee and K. Morita: ISIJ Int., 2004, vol. 44, pp. 235-242.

    CAS  Google Scholar 

  9. M.A. Rhamdhani, K.S. Coley, and G.A. Brooks: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 591-604.

    CAS  Google Scholar 

  10. W.M. Cao, L. Muhmood, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 363-369.

    Google Scholar 

  11. F.N.H. Schrama, E.M. Beunder, B. van den Berg, Y.X. Yang, and R. Boom: Ironmak. Steelmak., 2017, vol. 44, pp. 333-343.

    CAS  Google Scholar 

  12. M. Alba, S.H. Jung, M.S. Kim, J.Y. Seol, S.J. Yi, and Y.B. Kang: ISIJ Int., 2015, vol. 55, pp. 1581-1590.

    CAS  Google Scholar 

  13. M. Kato, K. Hasegawa, S. Nomura, and M. Inouye: Trans. ISIJ, 1983, vol. 23, pp. 618-627.

    CAS  Google Scholar 

  14. D. Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Dong, and F.B. Liu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1885-1897.

    CAS  Google Scholar 

  15. Y. Liu, Z. Zhang, G.Q. Li, Q. Wang, L. Wang, and B.K. Li: Steel Res. Int., 2017, vol. 88, 1700058.

    Google Scholar 

  16. M. Tao, B.S. Jin, W.Q. Zhong, Y.P. Yang, and R. Xiao: Chem. Eng. J., 2010, vol. 159, pp. 149-158.

    CAS  Google Scholar 

  17. Q.G. Xiong, Y. Yang, F. Xu, Y.Y. Pan, J.C. Zhang, K. Hong, G. Lorenzini, and S.R. Wang: ACS Sustainable Chem. Eng., 2017, vol. 5, pp. 2783-2798.

    CAS  Google Scholar 

  18. Q. Wang, F. Wang, G.Q. Li, Y.M. Gao, and B.K. Li: Int. J. Heat Mass Transfer, 2017, vol. 113, pp. 1021-1030.

    CAS  Google Scholar 

  19. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, and J. Bohacek: Steel Research Int., 2018, vol. 89, 1700100.

    Google Scholar 

  20. J. Yanke, K. Fezi, R.W. Trice, and M.J.M. Krane: Numer. Heat Tr. A-Appl., 2015, vol. 67, pp. 268-292.

    Google Scholar 

  21. C.Y. Zhu, P.J. Chen, G.Q. Li, X.Y. Luo, and W. Zheng: ISIJ Int., 2016, vol. 56, pp. 1368-1377.

    CAS  Google Scholar 

  22. C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-225.

    Google Scholar 

  23. Z. Sun, P. Li, G.M. Lu, B. Li, J. Wang, and J.G. Yu: Ind. Eng. Chem. Res., 2010, vol. 49, pp. 10798-10803.

    CAS  Google Scholar 

  24. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335–354.

    CAS  Google Scholar 

  25. Q. Wang, R.J. Zhao, M. Fafard, and B.K. Li: Appl. Therm. Eng., 2015, vol. 80, pp. 178-186.

    Google Scholar 

  26. A.H. Dilawari and J. Szekely: Metall. Trans., 1977, vol. 8, pp. 227-236.

    Google Scholar 

  27. D. Krasnov, O. Zikanov, and T. Boeck: Comput. Fluids, 2011, vol. 50, pp. 46-59.

    Google Scholar 

  28. F. Felten, Y. Fautrelle, Y. Du Terrail, and O. Metais: Appl. Math. Model., 2015, vol. 28, pp. 15-27.

    Google Scholar 

  29. Ansys Fluent Theory Guide, version 18.1; Ansys, Inc.: Canonsburg, PA, 2017.

  30. C. Byon: Int. J. Heat Mass Transfer, 2014, vol. 88, pp. 20–27.

    Google Scholar 

  31. P.G. Jönsson and L.T.I. Jonsson: ISIJ Int., 2001, vol. 41, pp. 1289-1302.

    Google Scholar 

  32. W.T. Lou and M.Y. Zhu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1706-1722.

    Google Scholar 

  33. T. Saitô and Y. Kawai: Science Reports of the Research Institutes, Tohoku University, Series A: Physics, Chemistry and Metallurgy, 1953, vol. 5, pp. 460-468.

    Google Scholar 

  34. Y. Kawai: Science Reports of the Research Institutes, Tohoku University, Series A: Physics, Chemistry and Metallurgy, 1957, vol. 9, pp. 78-83.

    CAS  Google Scholar 

  35. Y. Kawai: Science Reports of the Research Institutes, Tohoku University, Series A: Physics, Chemistry and Metallurgy, 1957, vol. 9, pp. 520-526.

    CAS  Google Scholar 

  36. S. Choi and A.V. Saveliev: Phys. Rev. Fluids, 2017, vol. 2, 063603.

    Google Scholar 

  37. H. Wang, Y.B. Zhong, Q. Li, Y.P. Fang, W.L. Ren, Z.S. Lei, and Z.M. Ren: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 655-663.

    Google Scholar 

  38. O. Vizika and D.A. Saville: J. Fluid Mech., 1992, vol. 239, pp. 1-21.

    CAS  Google Scholar 

  39. H.P. Yan, L.M. He, X.M. Luo, J. Wang, X. Huang, Y.L. Lü, and D.H. Yang: Langmuir, 2015, vol. 31, pp. 8275-8283.

    CAS  Google Scholar 

  40. W. Duangkhamchan, F. Ronsse, F. Depypere, K. Dewettinck, and J.G. Pieters: Chem. Eng. Sci., 2012, vol. 68, pp. 555-566.

    CAS  Google Scholar 

  41. X. Shi, Y. Xiang, L.X. Wen, and J.F. Chen: Chem. Eng. J., 2013, vol. 228, pp. 1040-1049.

    CAS  Google Scholar 

  42. Q. Wang, Z. He, B.K. Li, and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2425-2441.

    Google Scholar 

  43. Q. Wang, L. Gosselin, and B.K. Li: ISIJ Int., 2014, vol. 54, pp. 2821-30.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of this study by the National Natural Science Foundation of China (Grant No. 51804227). The experiment was also supported by the Hubei Rising Technology Co., Ltd., China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 13, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Lu, R., Chen, Z. et al. CFD and Experimental Investigation of Desulfurization of Rejected Electrolytic Manganese Metal in Electroslag Remelting Process. Metall Mater Trans B 51, 649–663 (2020). https://doi.org/10.1007/s11663-019-01766-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01766-y

Navigation