Skip to main content
Log in

Solidification Characteristics and Segregation Behavior of Cu-15Ni-8Sn Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The solidification characteristics and segregation behavior of Cu-15Ni-8Sn alloy were systematically investigated in the present study. The solidification characteristics were revealed with the assistance of a solidification quenching experiment, DTA analysis and Scheil simulation. The solidification microstructure of Cu-15Ni-8Sn alloy was characterized by SEM, and the results indicated that the as-cast microstructure of Cu-15Ni-8Sn alloy mainly consists of Sn-depleted α-Cu(Ni,Sn) matrix, Sn-rich γ phase and lamellar (α + γ) structure. It has been demonstrated that the solidification process begins with the nucleation and growth of primary Sn-depleted α1 phase (\( L \to \alpha_{1} \) at 1114 °C) and terminates with the divorced eutectic reaction (\( L_{2} \to \alpha_{2} + \gamma \) at 868 °C). During the subsequent cooling process, the discontinuous precipitation (\( \alpha_{2} \to \alpha_{1} + \gamma \)) takes place in the temperature range from about 700 °C to 600 °C. In addition, the macrosegregation behavior of Sn in Cu-15Ni-8Sn alloy was investigated by adopting vertical unidirectional solidification and measuring the cooling curves at different positions. The results indicated that an inverse macrosegregation of Sn solute exists in the as-prepared ingot, which mainly segregates at the chill surface of the alloy ingot. Namely, the Sn content is higher than 8 wt pct at the chill surface and about 8 wt pct inside the ingot for Cu-15Ni-8Sn alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.H. Schwartz, S. Mahajan, J.T. Plewes, Acta Metall.,1974, vol. 22, pp. 601-609

    Article  CAS  Google Scholar 

  2. L.H. Schwartz, J.T. Plewes, Acta Metall.,1974, vol. 22, pp. 911-921

    Article  CAS  Google Scholar 

  3. W.R. Cribb, F.C. Grensing, Can. Metall. Quart.,2013, vol. 50, pp. 232-239

    Article  Google Scholar 

  4. W.R. Cribb, M.J. Gedeon, F.C. Grensing, Adv. Mater. Process.,2013, vol. 171, pp. 20-25

    CAS  Google Scholar 

  5. J.C. Rhu, S.K. Sang, C.J. Yun, S.Z. Han, J.K. Chang, Metall. Mater. Trans. A,1999, vol. 30, pp. 2649-2657

    Article  Google Scholar 

  6. C.R. Scorey, S. Chin, M.J. White, R.J. Livak, J. Met.,1984, vol. 36, pp. 52-54

    CAS  Google Scholar 

  7. P. Goudeau, A. Naudon, J.M. Welter, Scripta Mater.,1988, vol. 22, pp. 1019-1022

    CAS  Google Scholar 

  8. L.E. Collins, J.R. Barry, Mater. Sci. Eng.,1988, vol. 98, pp. 335-338

    Article  CAS  Google Scholar 

  9. L. Deyong, R. Tremblay, R. Angers, Mater. Sci. Eng. A,1990, vol. 124, pp. 223-231

    Article  Google Scholar 

  10. R.H. Cookey, J.V. Wood, Powder Metall.,2013, vol. 33, pp. 335-338

    Article  Google Scholar 

  11. P. Kratochvíl, J. Mencl, J. Pešička, S.N. Komnik, Acta Metall.,1984, vol. 32, pp. 1493-1497

    Article  Google Scholar 

  12. H. Pal, S.K. Pradhan, M. De, Jpn. J. Appl. Phys.,1995, vol. 34, pp. 1619

    Article  CAS  Google Scholar 

  13. J.C. Zhao, M.R. Notis, Scripta Mater.,1998, vol. 39, pp. 1509-1516

    Article  CAS  Google Scholar 

  14. Y. Ouyang, X. Gan, Z. Li, K. Zhou, S. Zhang, Y. Jiang, X. Zhang, Mater. Sci. Eng. A,2017, vol. 704, pp

  15. P. Hermann, D.G. Morris, Metall. Mater. Trans. A,1994, vol. 25, pp. 1403-1412

    Article  Google Scholar 

  16. J. Caris, D. Li, J.J.S. Jr, J.J. Lewandowski, Mater. Sci. Eng. A,2010, vol. 527, pp. 769-781

    Article  Google Scholar 

  17. M. Kato, L.H. Schwartz, Mater. Sci. Eng.,1979, vol. 41, pp. 137-142

    Article  CAS  Google Scholar 

  18. P. Virtanen, T. Tiainen, Mater. Sci. Eng. A,1997, vol. 238, pp. 407-410

    Article  Google Scholar 

  19. J.B. Singh, W. Cai, P. Bellon, Wear,2007, vol. 263, pp. 830-841

    Article  CAS  Google Scholar 

  20. L. Jihui, L. Xuefeng, S. Laixin, C. Changfei, Mater. Sci. Forum.,2016, vol. 850, pp. 610-617

    Article  Google Scholar 

  21. X.Y. Liu, D. Tham, D. Yates, M.M. Jr, Mater. Sci. Eng. A,2007, vol. 458, pp. 123-125

    Article  CAS  Google Scholar 

  22. J. Miettinen, Calphad.,2003, vol. 27, pp. 309-318

    Article  CAS  Google Scholar 

  23. Z.-J. Wang, T.J. Konno, Philos. Mag.,2013, vol. 93, pp. 949-974

    Article  CAS  Google Scholar 

  24. S. Semboshi, J. Ikeda, A. Iwase, T. Takasugi, S. Suzuki, Materials,2015, vol. 8, pp. 3467-3478

    Article  CAS  Google Scholar 

  25. S. Semboshi, S. Sato, A. Iwase, T. Takasugi, Mater. Charact.,2016, vol. 115, pp. 39-45

    Article  CAS  Google Scholar 

  26. B. Alili, D. Bradai, P. Zieba, Mater. Charact.,2008, vol. 59, pp. 1526-1530

    Article  CAS  Google Scholar 

  27. J.C. Zhao, M.R. Notis, Acta Mater.,1998, vol. 46, pp. 4203-4218

    Article  CAS  Google Scholar 

  28. I. Manna, S.K. Pabi, W. Gust, Int. Mater. Rev.,2001, vol. 46, pp. 53-91

    Article  CAS  Google Scholar 

  29. E. Contreras-Piedras, R. Esquivel-Gonzalez, V.M. Lopez-Hirata, M.L. Saucedo-Munoz, A.M. Paniagua-Mercado, H.J. Dorantes-Rosales, Mater. Sci. Eng. A,2010, vol. 527, pp. 7775-7778

    Article  Google Scholar 

  30. E. Haug, A. Mo, H.J. Thevik, Int. J. Multiphas. Flow,1995, vol. 38, pp. 1553-1563

    CAS  Google Scholar 

  31. S. Minakawa, I.V. Samarasekera, F. Weinberg, Metall. Mater. Trans. B,1985, vol. 16, pp. 595-604

    Article  Google Scholar 

  32. P. Rousset, M. Rappaz, B. Hannart, Metall. Mater. Trans. A,1995, vol. 26, pp. 2349-2358

    Article  Google Scholar 

  33. H.J. Thevik, A. Mo, T. Rusten, Metall. Mater. Trans. B,1999, vol. 30, pp. 135-142

    Article  Google Scholar 

  34. J.A. Dantzig, M. Rappaz, EPFL Press, 2009, London, vol., pp. 578–605

Download references

Acknowledgments

The authors gratefully acknowledge the support of National Key Research and Development Program of China (Nos. 2017YFB0306105, 2016YFB0301303), the National Natural Science Foundation of China (Nos. 51771040, 51501028, 51690163, 51871041) and Fundamental Research Funds for the Central Universities of China (No. DUT17JC44), to whom we are very grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchuan Jie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 29, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Jie, J., Liu, S. et al. Solidification Characteristics and Segregation Behavior of Cu-15Ni-8Sn Alloy. Metall Mater Trans A 51, 1229–1241 (2020). https://doi.org/10.1007/s11661-019-05609-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05609-y

Navigation