Skip to main content
Log in

Influence of Pore Size and Crystallography on the Small Crack HCF Behavior of an A357-T6 Cast Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-cycle fatigue, small crack propagation behavior of an A357-T6 cast aluminum alloy is investigated. Laboratory X-ray micro-computed tomography \((\mu {\text {CT}})\) is used to assist in the manufacturing of two flat fatigue specimens containing subsurface shrinkage pores of different sizes (Pore 1 \(\sqrt{A} = 522\,\mu {\text {m}}\) against Pore 2 \(\sqrt{A} = 280\,\mu {\text {m}}\)). Surface crack monitoring is performed by means of optical microscopy and the cracked specimens are analyzed via scanning electron microscopy and electron backscatter diffraction techniques. The subsurface pores tend to induce intergranular crack nucleation, principally when the grain boundaries are oriented perpendicular to the loading direction. Pore 1 induces a fatigue life reduction of 500.000 cycles when compared to Pore 2. The crystallography is able to influence small crack propagation by slightly decelerating the crack growth rates as well as by altering the crack path topography. Tailoring of the crystallography for improved fatigue resistance requires an investigation of the optimal largest defect to grain size ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The longest distance between any two points a particle.

  2. A circle having the same Area as the measured grain \((\varnothing _{A_{eq}}=\sqrt{\frac{4\times Area}{\pi }}).\)

  3. The average grain size was calculated using a weighted arithmetic average where the largest grains contribute more to the final average than the smallest.

  4. In this work, ligament is referred as the thin bridge of material standing between the specimen free surface and the subsurface pores.

References

  1. M.J. Couper, A.E. Neeson, and J.R. Griffiths: FFEMS, 1990, vol. 13, p. 213.

    Google Scholar 

  2. B. Skallerud, T. Iveland, and G. Haerkegard: Eng. Fract. Mech., 1993, vol. 44, p. 857.

    Article  Google Scholar 

  3. J. Odegård and K. Pedersen: Technical Paper 940811, SAE International, 1994.

  4. B. Zhang, D. Poirier, and W. Chen: Mater. Sci. Eng. A, 1999, vol. 30, p. 2659.

    Google Scholar 

  5. Q. Wang, D. Apelian, and D. Lados: J. Light Met., 2001, vol. 1, p. 73.

    Article  CAS  Google Scholar 

  6. J.Y. Buffiere, S. Savelli, P. Jouneau, E. Maire, and R. Fougeres: Mater. Sci. Eng. A, 2001, vol. 316, p. 115.

    Article  Google Scholar 

  7. H. Mayer, M. Papakyriacou, B. Zettl, and S. Stanzl-Tschegg: Int. J. Fatigue, 2003, vol. 25, p. 245.

    Article  CAS  Google Scholar 

  8. Y.X. Gao, J.Z. Yi, P.D. Lee, and T.C. Lindley: FFEMS, 2004, vol. 27, p. 559.

    CAS  Google Scholar 

  9. J. Yi, P. Lee, T. Lindley, and T. Fukui: Mater. Sci. Eng. A, 2006, vol. 432, p. 59.

    Article  CAS  Google Scholar 

  10. H. Ammar, A. Samuel, and F. Samuel: Mater. Sci. Eng. A, 2008, vol. 473, p. 65.

    Article  CAS  Google Scholar 

  11. X. Zhu, A. Shyam, J. Jones, H. Mayer, J. Lasecki, and J. Allison: Third Int. Conf. Very High Cycle Fatigue (VHCF-3).

  12. P. Li, P. Lee, D. Maijer, and T. Lindley: Acta Mater., 2009, vol. 57, p. 3539.

    Article  CAS  Google Scholar 

  13. M. Brochu, Y. Verreman, F. Ajersch, and D. Bouchard: Int. J. Fatigue, 2010, vol. 32, p. 1233.

    Article  CAS  Google Scholar 

  14. N. Vanderesse, E. Maire, A. Chabod, and J.Y. Buffiere: Int. J. Fatigue, 2011, vol. 33, p. 1514.

    Article  CAS  Google Scholar 

  15. I. Serrano-Munoz, J.Y. Buffiere, C. Verdu, Y. Gaillard, P. Mu, and Y. Nadot: Int. J. Fatigue, 2016, vol. 82, p. 361.

    Article  CAS  Google Scholar 

  16. S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  17. J. Schijve: Fatigue of Structures and Materials, Springer, Dordrecht, 2009.

    Book  Google Scholar 

  18. A. Pineau, D.L. McDowell, E.P. Busso, and S.D. Antolovich: Acta Mater., 2016, vol. 107, p. 484.

    Article  CAS  Google Scholar 

  19. D. McDowell, K. Gall, M. Horstemeyer, and J. Fan: Eng. Fract. Mech., 2003, vol. 70, p. 49.

    Article  Google Scholar 

  20. T. Zhai, A. Wilkinson, and J. Martin: Acta Mater., 2000, vol. 48, p. 4917.

    Article  CAS  Google Scholar 

  21. W. Ludwig, J. Buffiere, S. Savelli, and P. Cloetens: Acta Mater., 2003, vol. 51, p. 585.

    Article  CAS  Google Scholar 

  22. E. Ferrie, J.Y. Buffiere, and W. Ludwig: Int. J. Fatigue, 2005, vol. 27, p. 1215.

    Article  CAS  Google Scholar 

  23. W. Schaef, M. Marx, H. Vehoff, A. Heckl, and P. Randelzhofer: Acta Mater., 2011, vol. 59, p. 1849.

    Article  CAS  Google Scholar 

  24. S. Siegfanz, A. Giertler, W. Michels, and U. Krupp: Mater. Sci. Eng. A, 2013, vol. 565, p. 21.

    Article  CAS  Google Scholar 

  25. U. Krupp, A. Giertler, S. Siegfanz, and W. Michels: Key Eng. Mater., 2013, vol. 592, p. 393.

    Article  Google Scholar 

  26. K.J. Miller: . Fatigue Eng. Mater. Struct., 1982, vol. 5, p. 223.

    Article  Google Scholar 

  27. K.J. Miller: Mater. Sci. Technol., 1993, vol. 9, p. 453.

    Article  CAS  Google Scholar 

  28. K. Shiozawa, Y. Tohda, and S.M. Sun: FFEMS, 1997, vol. 20, p. 237.

    CAS  Google Scholar 

  29. Y. Murakami and M. Endo: Int. J. Fatigue, 1994, vol. 16, p. 163.

    Article  CAS  Google Scholar 

  30. I. Serrano-Munoz, J.Y. Buffiere, and C. Verdu: Int. J. Fatigue, 2018, vol. 117, p. 471.

    Article  CAS  Google Scholar 

  31. I. Serrano-Munoz, J.Y. Buffiere, R. Mokso, C. Verdu, and Y. Nadot: Sci. Rep., 2017, vol. 7, p. 45239.

    Article  CAS  Google Scholar 

  32. Q. Wang, D. Apelian, and D. Lados: J. Light Met., 2001, vol. 1, p. 85.

    Article  Google Scholar 

  33. K. Gall, N. Yang, M. Horstemeyer, D.L. McDowell, and J. Fan: FFEMS, 2000, vol. 23, p. 159.

    CAS  Google Scholar 

  34. R. Carter, E. Lee, E. Starke, and C. Beevers: Metall. Trans. A, 1984, vol. 15, p. 555.

    Article  Google Scholar 

  35. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona: Nat. Methods, 2012, vol. 9, p. 676. EP Perspective.

  36. ARP1947A: Aerospace Recommended Practice, SAE International Group, 2007.

  37. HKL-Technology: HKL Channel 5 Users Manual, HKL-Technology, Danbury, CT, 2001.

  38. I. Serrano-Munoz: Influence of Casting Defects on the Fatigue Behaviour of an A357-T6 Aerospace Alloy. Ph.D. Thesis, INSA de Lyon, 2014.

  39. P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay: Int. J. Plast., 2005, vol. 21, p. 589.

    Article  CAS  Google Scholar 

  40. L. Delannay, M. Melchior, J. Signorelli, J.F. Remacle, and T. Kuwabara: Comput. Mater. Sci., 2009, vol. 45, p. 739.

    Article  CAS  Google Scholar 

  41. S. Dancette, L. Delannay, T. Jodlowski, and J. Giovanola: Int. J. Mater. Form., 2010, vol. 3, p. 251.

    Article  Google Scholar 

  42. S. Dancette, L. Delannay, K. Renard, M. Melchior, and P. Jacques: Acta Mater., 2012, vol. 60, p. 2135.

    Article  CAS  Google Scholar 

  43. S. Dancette, A. Browet, G. Martin, M. Willemet, and L. Delannay: Model. Simul. Mater. Sci. Eng., 2016, vol. 24, p. 055014.

    Article  CAS  Google Scholar 

  44. L. Delannay, P.J. Jacques, and S.R. Kalidindi: Int. J. Plast., 2006, vol. 22, p. 1879.

    Article  CAS  Google Scholar 

  45. C. Lavogiez, S. Dancette, S. Cazottes, C. Le Bourlot, and E. Maire: Mater. Charact., 2018, vol. 146, p. 81.

    Article  CAS  Google Scholar 

  46. J. Campbell: Casting Practice: The Ten Rules of Casting, Butterworth-Heinemann, Oxford, 2004.

    Google Scholar 

  47. T.L. Anderson: Fracture Mechanics, CRC Press, Boca Raton, 1995, p. 627.

    Google Scholar 

  48. J. Newman Jr. and I. Raju: Eng. Fract. Mech., 1981, vol. 15, p. 185.

    Article  Google Scholar 

  49. P. Mu, Y. Nadot, C. Nadot-Martin, A. Chabod, I. Serrano-Munoz, and C. Verdu: Int. J. Fatigue, 2014, vol. 63, p. 97.

    Article  CAS  Google Scholar 

  50. Z. Xu, W. Wen, and T. Zhai: Metall. Mater. Trans. A, 2012, vol. 43A, p. 2763.

    Article  CAS  Google Scholar 

  51. A. Borbely, H. Mughrabi, G. Eisenmeier, and H. Hoppel: Int. J. Fract., 2002, vol. 115, p. 227.

    Article  Google Scholar 

  52. L. Bolzoni, M. Nowak, and N.H. Babu: Mater. Des. (1980–2015), 2015, vol. 66, p. 376.

    Article  CAS  Google Scholar 

  53. S. Nafisi and R. Ghomashchi: J. Mater. Process. Technol., 2006, vol. 174, p. 371.

    Article  CAS  Google Scholar 

  54. E. Samuel, B. Golbahar, A. Samuel, H. Doty, S. Valtierra, and F. Samuel: Mater. Des. (1980–2015), 2014, vol. 56, p. 468.

    Article  CAS  Google Scholar 

  55. C.Y. Kung and M.E. Fine: Metall. Trans. A, 1979, vol. 10, p. 603.

    Article  Google Scholar 

  56. W.L. Morris: Metall. Trans. A, 1980, vol. 11, p. 1117.

    Article  Google Scholar 

  57. J. Schijve: Eng. Fract. Mech., 1981, vol. 14, p. 467.

    Article  Google Scholar 

  58. R. Ritchie: Workshop Mech. Phys. Crack Growth Appl. Life Predict.

Download references

Acknowledgments

Authors thank the French National Research Agency (ANR) for the funding of this Project: “Influence des DEfauts de Fonderie sur la Fatigue des Alliages Aéronautiques” (IDEFFAAR ANR-10-RMNP-0016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Serrano-Munoz or J.-Y. Buffiere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on July 3, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano-Munoz, I., Dancette, S., Verdu, C. et al. Influence of Pore Size and Crystallography on the Small Crack HCF Behavior of an A357-T6 Cast Aluminum Alloy. Metall Mater Trans A 51, 1416–1427 (2020). https://doi.org/10.1007/s11661-019-05590-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05590-6

Navigation