Skip to main content
Log in

A nanocomposite consisting of etched multiwalled carbon nanotubes, amino-modified metal-organic framework UiO-66 and polyaniline for preconcentration of polycyclic aromatic hydrocarbons prior to their determination by HPLC

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A polyaniline composite doped with etched multi-walled carbon nanotubes and UiO-66-NH2 was prepared by electropolymerization. It was used as a sorbent to extract the polycyclic aromatic hydrocarbons (PAHs) phenanthrene, fluoranthene and pyrene. Its surface morphology, crystal structure and capability of adsorbing PAHs were characterized by scanning electron microscopy, X-ray photoelectron spectrometry, Fourier transform infrared spectrometry and zeta potentiometry. The π stacking and anion-π interactions are shown to play dominant roles in the sorption mechanism. Coupled with high performance liquid chromatography, the composite-modified fiber was applied to detect PAHs in lake water samples by direct immersion extraction. The method excels by (a) wide linear range (0.05–20 ng mL−1), (b) low limits of detection (10 pg mL−1), (c) satisfactory recovery from spiked samples (84.7–113.8%), and (d) good reproducibility (relative standard deviations of <6.5%). The method is superior in terms of costs and reproducibility compared to some pretreatment methods with mass spectrometric detection.

Schematic representation for interaction between PANI-etched MWCNT/UiO-66-NH2 and polycyclic aromatic hydrocarbons (phenanthrene, fluoranthene, pyrene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lupica-Spagnolo L, Ward DJ, Marie JJ, Lymperopoulou S, Bradshaw D (2018) Pollen-like ZIF-8 colloidosomes via emulsion templating and etching. Chem Commun 54(61):8506–8509. https://doi.org/10.1039/c8cc03511c

    Article  CAS  Google Scholar 

  2. Kim H, Lah MS (2017) Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. Dalton Trans 46(19):6146–6158. https://doi.org/10.1039/c7dt00389g

    Article  CAS  PubMed  Google Scholar 

  3. Liu W, Huang J, Yang Q, Wang S, Sun X, Zhang W, Liu J, Huo F (2017) Multi-shelled hollow metal-organic frameworks. Angew Chem Int Ed 56(20):5512–5516. https://doi.org/10.1002/anie.201701604

    Article  CAS  Google Scholar 

  4. Avci C, Arinez-Soriano J, Carne-Sanchez A, Guillerm V, Carbonell C, Imaz I, Maspoch D (2015) Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew Chem Int Ed 54(48):14417–14421. https://doi.org/10.1002/anie.201507588

    Article  CAS  Google Scholar 

  5. Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong H-K (2012) Current status of metal–organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51(5):2179–2199. https://doi.org/10.1021/ie202038m

    Article  CAS  Google Scholar 

  6. Riccò R, Liang W, Li S, Gassensmith JJ, Caruso F, Doonan C, Falcaro P (2018) Metal-organic frameworks for cell and virus biology: a perspective. ACS Nano 12(1):13–23. https://doi.org/10.1021/acsnano.7b08056

    Article  CAS  PubMed  Google Scholar 

  7. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal-organic framework-derived Nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11(6):5293–5308. https://doi.org/10.1021/acsnano.7b02796

    Article  CAS  PubMed  Google Scholar 

  8. Jia Y, Su H, Wang Z, Wong YE, Chen X, Wang M, Chan TD (2016) Metal-organic framework@microporous organic network as adsorbent for solid-phase microextraction. Anal Chem 88(19):9364–9367. https://doi.org/10.1021/acs.analchem.6b03156

    Article  CAS  PubMed  Google Scholar 

  9. Bradshaw D, El-Hankari S, Lupica-Spagnolo L (2014) Supramolecular templating of hierarchically porous metal–organic frameworks. Chem Soc Rev 43(16):5431–5443. https://doi.org/10.1039/C4CS00127C

    Article  CAS  PubMed  Google Scholar 

  10. Yue Y, Fulvio PF, Dai S (2015) Hierarchical metal-organic framework hybrids: perturbation-assisted nanofusion synthesis. Acc Chem Res 48(12):3044–3052. https://doi.org/10.1021/acs.accounts.5b00349

    Article  CAS  PubMed  Google Scholar 

  11. Singh V, Guo T, Xu H, Wu L, Gu J, Wu C, Gref R, Zhang J (2017) Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding. Chem Commun 53(66):9246–9249. https://doi.org/10.1039/c7cc03471g

    Article  CAS  Google Scholar 

  12. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43(1):153–161. https://doi.org/10.1016/j.carbon.2004.08.033

    Article  CAS  Google Scholar 

  13. Zhao Y, Chen H, Li J, Chen C (2015) Hierarchical MWCNTs/Fe3O4/PANI magnetic composite as adsorbent for methyl orange removal. J Colloid Interface Sci 450:189–195. https://doi.org/10.1016/j.jcis.2015.03.015

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Jia X, She Q, Wang C, Zhang Q, Zheng M, Dong Q (2010) The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochim Acta 55(27):8062–8066. https://doi.org/10.1016/j.electacta.2010.01.069

    Article  CAS  Google Scholar 

  15. Aboutalebi SH, Chidembo AT, Salari M, Konstantinov K, Wexler D, Liu HK, Dou SX (2011) Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ Sci 4(5):1855. https://doi.org/10.1039/c1ee01039e

    Article  CAS  Google Scholar 

  16. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes--the route toward applications. Science 297(5582):787–792. https://doi.org/10.1126/science.1060928

    Article  CAS  PubMed  Google Scholar 

  17. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652. https://doi.org/10.1016/j.carbon.2006.02.038

    Article  CAS  Google Scholar 

  18. Qasem NAA, Qadir NU, Ben-Mansour R, Said SAM (2017) Synthesis, characterization, and CO2 breakthrough adsorption of a novel MWCNT/MIL-101(Cr) composite. J CO2 Util 22:238–249. https://doi.org/10.1016/j.jcou.2017.10.015

    Article  CAS  Google Scholar 

  19. Minjia H, Chao T, Qunfang Z, Guibin J (2004) Preparation of polyaniline coating on a stainless-steel wire using electroplating and its application to the determination of six aromatic amines using headspace solid-phase microextraction. J Chromatogr A 1048(2):257–262. https://doi.org/10.1016/j.chroma.2004.07.059

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Zhong M, Chen J (2008) Electrodeposited polyaniline as a fiber coating for solid-phase microextraction of organochlorine pesticides from water. J Sep Sci 31(15):2839–2845. https://doi.org/10.1002/jssc.200800156

    Article  CAS  PubMed  Google Scholar 

  21. Bagheri H, Mir A, Babanezhad E (2005) An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water. Anal Chim Acta 532(1):89–95. https://doi.org/10.1016/j.aca.2004.10.040

    Article  CAS  Google Scholar 

  22. Lewis TW, Wallace GG, Smyth MR (1999) Electrofunctional polymers: their role in the development of new analytical systems. Analyst 124(3):213–219. https://doi.org/10.1039/A808015A

    Article  CAS  Google Scholar 

  23. Lu C, Ben T, Xu S, Qiu S (2014) Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film. Angew Chem Int Ed Engl 53(25):6454–6458. https://doi.org/10.1002/anie.201402950

    Article  CAS  PubMed  Google Scholar 

  24. Egardt J, Mork Larsen M, Lassen P, Dahllof I (2018) Release of PAHs and heavy metals in coastal environments linked to leisure boats. Mar Pollut Bull 127:664–671. https://doi.org/10.1016/j.marpolbul.2017.12.060

    Article  CAS  PubMed  Google Scholar 

  25. Stout SA, Payne JR, Emsbo-Mattingly SD, Baker G (2016) Weathering of field-collected floating and stranded Macondo oils during and shortly after the deepwater horizon oil spill. Mar Pollut Bull 105(1):7–22. https://doi.org/10.1016/j.marpolbul.2016.02.044

    Article  CAS  PubMed  Google Scholar 

  26. Farmer PB, Singh R, Kaur B, Sram RJ, Binkova B, Kalina I, Popov TA, Garte S, Taioli E, Gabelova A, Cebulska-Wasilewska A (2003) Molecular epidemiology studies of carcinogenic environmental pollutants. Mutat Res/Rev Mutat 544(2-3):397–402. https://doi.org/10.1016/j.mrrev.2003.09.002

    Article  CAS  Google Scholar 

  27. Sram RJ, Svecova V, Rossnerova A (2016) Systematic review of the use of the lymphocyte cytokinesis-block micronucleus assay to measure DNA damage induced by exposure to polycyclic aromatic hydrocarbons. Mutat Res/Rev Mutat 770(Pt A):162–169. https://doi.org/10.1016/j.mrrev.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  28. Zelinkova Z, Wenzl T (2015) The occurrence of 16 EPA PAHs in food - a review. Polycycl Aromat Compd 35(2-4):248–284. https://doi.org/10.1080/10406638.2014.918550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan Z, Miao F, Xiao Z, Juan H, Hongbing Z (2007) Effect of doping levels on the pore structure of carbon nanotube/silica xerogel composites. Mater Lett 61(3):644–647. https://doi.org/10.1016/j.matlet.2006.05.074

    Article  CAS  Google Scholar 

  30. Wang J, Chen Z, Chen B (2014) Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ Sci Technol 48(9):4817–4825. https://doi.org/10.1021/es405227u

    Article  CAS  PubMed  Google Scholar 

  31. Aragay G, Frontera A, Lloveras V, Vidal-Gancedo J, Ballester P (2013) Different nature of the interactions between anions and HAT(CN)6: from reversible anion-pi complexes to irreversible electron-transfer processes (HAT(CN)6 = 1,4,5,8,9,12-hexaazatriphenylene). J Am Chem Soc 135(7):2620–2627. https://doi.org/10.1021/ja309960m

    Article  CAS  PubMed  Google Scholar 

  32. Wang DX, Wang MX (2013) Anion-pi interactions: generality, binding strength, and structure. J Am Chem Soc 135(2):892–897. https://doi.org/10.1021/ja310834w

    Article  CAS  PubMed  Google Scholar 

  33. Bu Y, Feng J, Sun M, Zhou C, Luo C (2016) Facile and efficient poly(ethylene terephthalate) fibers-in-tube for online solid-phase microextraction towards polycyclic aromatic hydrocarbons. Anal Bioanal Chem 408(18):4871–4882. https://doi.org/10.1007/s00216-016-9567-z

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Chen B (2015) Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ Sci Technol 49(10):6181–6189. https://doi.org/10.1021/es5054946

    Article  CAS  PubMed  Google Scholar 

  35. Hu X, Wang C, Li J, Luo R, Liu C, Sun X, Shen J, Han W, Wang L (2018) Metal-organic framework-derived hollow carbon Nanocubes for fast solid-phase microextraction of polycyclic aromatic hydrocarbons. ACS Appl Mater Interfaces 10(17):15051–15057. https://doi.org/10.1021/acsami.8b02281

    Article  CAS  PubMed  Google Scholar 

  36. Bagheri H, Soofi G, Javanmardi H, Karimi M (2018) A 3D nanoscale polyhedral oligomeric silsesquioxanes network for microextraction of polycyclic aromatic hydrocarbons. Microchim Acta 185(9):418. https://doi.org/10.1007/s00604-018-2950-z

    Article  CAS  Google Scholar 

  37. Wang W, Li Z, Wang W, Zhang L, Zhang S, Wang C, Wang Z (2017) Microextraction of polycyclic aromatic hydrocarbons by using a stainless steel fiber coated with nanoparticles made from a porous aromatic framework. Microchim Acta 185(1):20. https://doi.org/10.1007/s00604-017-2577-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Nature Science Foundation of China (No. 61301048) and the Natural Science Fund for Creative Research Groups of Hubei Province of China (No. 2011CDA111)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueping Dang or Huaixia Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, B., Dang, X. et al. A nanocomposite consisting of etched multiwalled carbon nanotubes, amino-modified metal-organic framework UiO-66 and polyaniline for preconcentration of polycyclic aromatic hydrocarbons prior to their determination by HPLC. Microchim Acta 187, 78 (2020). https://doi.org/10.1007/s00604-019-3997-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3997-1

Keywords

Navigation