Skip to main content
Log in

VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous Zinc-ion batteries (ZIBs), using zinc negative electrode and aqueous electrolyte, have attracted great attention in energy storage field due to the reliable safety and low-cost. A composite material comprised of VO2·0.2H2O nanocuboids anchored on graphene sheets (VOG) is synthesized through a facile and efficient microwave-assisted solvothermal strategy and is used as aqueous ZIBs cathode material. Owing to the synergistic effects between the high conductivity of graphene sheets and the desirable structural features of VO2·0.2H2O nanocuboids, the VOG electrode has excellent electronic and ionic transport ability, resulting in superior Zn ions storage performance. The Zn/VOG system delivers ultrahigh specific capacity of 423 mAh·g−1 at 0.25 A·g−1 and exhibits good cycling stability of up to 1,000 cycles at 8 A·g−1 with 87% capacity retention. Systematical structural and elemental characterizations confirm that the interlayer space of VO2·0.2H2O nanocuboids can adapt to the reversible Zn ions insertion/extraction. The as-prepared VOG composite is a promising cathode material with remarkable electrochemical performance for low-cost and safe aqueous rechargeable ZIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shi, J. L.; Xiao, D. D.; Ge, M. Y.; Yu, X. Q.; Chu, Y.; Huang, X. J.; Zhang, X. D.; Xin, Y. X.; Yang, X. Q.; Guo, Y. G. et al. High-capacity cathode material with high voltage for Li-ion batteries. Adv. Mater.2018, 30, 1705575.

    Google Scholar 

  2. Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater.2009, 21, 4593–4607.

    Google Scholar 

  3. Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater.2008, 18, 3941–3946.

    CAS  Google Scholar 

  4. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater.2008, 20, 2878–2887.

    CAS  Google Scholar 

  5. He, H. Y.; Fu, W.; Wang, H. T.; Jin, C. H.; Fan, H. J.; Liu, Z. Silica-modified SnO2-graphene “slime” for self-enhanced Li-ion battery anode. Nano Energy2017, 34, 449–455.

    CAS  Google Scholar 

  6. Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett.2015, 15, 738–744.

    CAS  Google Scholar 

  7. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater.2017, 29, 1601759.

    Google Scholar 

  8. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater.2010, 22, 587–603.

    CAS  Google Scholar 

  9. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci.2011, 4, 3243–3262.

    CAS  Google Scholar 

  10. Song, M.; Tan, H. Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater.2018, 28, 1802564.

    Google Scholar 

  11. Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci.2019, 11, 3288–3304.

    Google Scholar 

  12. Hu, P.; Zhu, T.; Wang, X. P.; Wei, X. J.; Yan, M. Y.; Li, J. T.; Luo, W.; Yang, W.; Zhang, W. C.; Zhou, L. et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett.2018, 18, 1758–1762.

    CAS  Google Scholar 

  13. He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Q. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater.2018, 8, 1702463.

    Google Scholar 

  14. He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; Chen, L. N.; An, Q. Y.; Mai, L. Q. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater.2017, 7, 1601920.

    Google Scholar 

  15. Chao, D. L.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H. F.; Wang, J.; Wang, R. M.; Zhang, H. et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater.2018, 30, 1803181.

    Google Scholar 

  16. Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc.2017, 139, 9775–9778.

    CAS  Google Scholar 

  17. Zeng, Y. X.; Zhang, X. Y.; Meng, Y.; Yu, M. H.; Yi, J. A.; Wu, Y. Q.; Lu, X. H.; Tong, Y. X. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater.2017, 29, 1700274.

    Google Scholar 

  18. Liu, Z.; Pulletikurthi, G.; Endres, F. A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces2016, 8, 12158–12164.

    CAS  Google Scholar 

  19. Lee, J. S.; Nam, G.; Sun, J.; Higashi, S.; Lee, H. W.; Lee, S.; Chen, W.; Cui, Y.; Cho, J. Composites of a Prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air battery. Adv. Energy Mater.2016, 6, 1601052.

    Google Scholar 

  20. Pang, Q.; Sun, C. L.; Yu, Y. H.; Zhao, K. N.; Zhang, Z. Y.; Voyles, P. M.; Chen, G. Wei, Y. J.; Wang, X. D. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater.2018, 8, 1800144.

    Google Scholar 

  21. Guo, S.; Fang, G. Z.; Liang, S. Q.; Chen, M. H.; Wu, X. W.; Zhou, J. Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Mater.2019, 180, 51–59.

    CAS  Google Scholar 

  22. Yang, Y. Q.; Tang, Y.; Fang, G. Z.; Shan, L. T.; Guo, J. S.; Zhang, W. Y.; Wang, C.; Wang, L. B.; Zhou, J.; Liang, S. Q. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci.2018, 11, 3157–3162.

    CAS  Google Scholar 

  23. Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett.2019, 11, 25.

    CAS  Google Scholar 

  24. Peng, Z.; Wei, Q. L.; Tan, S. S.; He, P.; Luo, W.; An, Q. Y.; Mai, L. Q. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun.2018, 54, 4041–4044.

    CAS  Google Scholar 

  25. Chen, Z. J.; Gao, S. K.; Jiang, L. L.; Wei, M. D.; Wei, K. M. Crystalline VO2(B) nanorods with a rectangular cross-section. Mater. Chem. Phys.2010, 121, 254–258.

    CAS  Google Scholar 

  26. Dai, X.; Wan, F.; Zhang, L. L.; Cao, H. M.; Niu, Z. Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Stor. Mater.2019, 17, 143–150.

    Google Scholar 

  27. Li, Z. L.; Ganapathy, S.; Xu, Y. L.; Zhou, Z.; Sarilar, M.; Wagemaker, M. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater.2019, 9, 1900237.

    Google Scholar 

  28. Rao Popuri, S.; Miclau, M.; Artemenko, A.; Labrugere, C.; Villesuzanne, A.; Pollet, M. Rapid hydrothermal synthesis of VO2(B) and its conversion to thermochromic VO2(M1). Inorg. Chem.2013, 52, 4780–4785.

    Google Scholar 

  29. Rakhi, R. B.; Nagaraju, D. H.; Beaujuge, P.; Alshareef, H. N. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte. Electrochim. Acta2016, 220, 601–608.

    CAS  Google Scholar 

  30. Wang, C. Q.; Shao, J.; Liu, X. L.; Chen, Y.; Xiong, W. M.; Zhang, X. Y.; Zheng, Y. Phase transition characteristics in the conductivity of VO2(A) nanowires: Size and surface effects. Phys. Chem. Chem. Phys.2016, 18, 10262–10269.

    CAS  Google Scholar 

  31. Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Jr. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. J. Appl. Phys.2004, 96, 1209–1213.

    CAS  Google Scholar 

  32. Liu, L.; Liu, Q.; Zhao, W.; Li, G. C.; Wang, L. M.; Shi, W. D.; Chen, L. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries. Nanotechnology2017, 28, 065404.

    Google Scholar 

  33. Lin, T. G.; Wang, L. P.; Wang, X. F.; Zhang, Y. F.; Yu, Y. H. Influence of lattice distortion on phase transition properties of polycrystalline VO2 thin film. Appl. Surf. Sci.2016, 379, 179–185.

    CAS  Google Scholar 

  34. Zhang, C. F.; Chen, Z. X.; Guo, Z. P.; Lou, X. W. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci.2013, 6, 974–978.

    CAS  Google Scholar 

  35. Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun.2013, 4, 1687.

    Google Scholar 

  36. Fang, W. C. Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J. Phys. Chem. C2008, 112, 11552–11555.

    CAS  Google Scholar 

  37. Qin, W. Q.; Yang, C. R.; Yi, R.; Gao, G. H. Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. J. NanoMater.2011, 2011, 159259.

    Google Scholar 

  38. Twu, J.; Shih, C. F.; Guo, T. H.; Chen, K. H. Raman spectroscopic studies of the thermal decomposition mechanism of ammonium metavanadate. J. Mater. Chem.1997, 7, 2273–2277.

    CAS  Google Scholar 

  39. Chen, S. H.; Wang, J.; Fan, L.; Ma, R. F.; Zhang, E. J.; Liu, Q.; Lu, B. A. An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater.2018, 8, 1800140.

    Google Scholar 

  40. Kaper, H.; Willinger, M. G.; Djerdj, I.; Gross, S.; Antonietti, M.; Smarsly, B. M. IL-assisted synthesis of V2O5 nanocomposites and VO2 nanosheets. J. Mater. Chem.2008, 18, 5761–5769.

    CAS  Google Scholar 

  41. Nethravathi, C.; Viswanath, B.; Michael, J.; Rajamath, M. Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon2012, 50, 4839–4846.

    CAS  Google Scholar 

  42. Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Aqueous rechargeable Zn-ion batteries: An imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J. Mater. Chem. A2018, 6, 3850–3856.

    CAS  Google Scholar 

  43. Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy2016, 1, 16039.

    CAS  Google Scholar 

  44. Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun.2017, 8, 405.

    CAS  Google Scholar 

  45. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater.2010, 9, 146–151.

    CAS  Google Scholar 

  46. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C2007, 111, 14925–14931.

    CAS  Google Scholar 

  47. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science2014, 343, 1210–1211.

    CAS  Google Scholar 

  48. Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater.2015, 27, 3305–3309.

    CAS  Google Scholar 

  49. Zhu, K.; Yan, X.; Zhang, Y. Q.; Wang, Y. H.; Su, A. Y.; Bie, X. F.; Zhang, D.; Du, F.; Wang, C. Z.; Chen, G. et al. Synthesis of H2V3O8/reduced graphene oxide composite as a promising cathode material for lithium-ion batteries. ChemPlusChem2014, 79, 447–453.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to funds from the China Postdoctoral Science Foundation (No. RZ1900011127), Qingdao Innovation Leading Talent Program and Taishan Scholars Program and Natural Science Foundation of Shandong (No. ZR2017BEM028). M. S. is thankful to funds from the Science Foundation of Jiangsu Province (No. BK20171169). C. W. L. thanks the support from National Natural Science Foundation of China (No. 51802168), China Postdoctoral Science Foundation (No. 2018M630753), Natural Science Foundation of Shandong Province (No. ZR2018BEM006), and Qingdao Postdoctoral Application Research Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dedong Jia, Chenwei Li or Jingquan Liu.

Electronic Supplementary Material

12274_2019_2603_MOESM1_ESM.pdf

VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Zheng, K., Song, M. et al. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 13, 215–224 (2020). https://doi.org/10.1007/s12274-019-2603-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2603-5

Keywords

Navigation