1932

Abstract

With the decline of reef-building corals on tropical reefs, sponges have emerged as an important component of changing coral reef ecosystems. Seemingly simple, sponges are highly diverse taxonomically, morphologically, and in terms of their relationships with symbiotic microbes, and they are one of nature's richest sources of novel secondary metabolites. Unlike most other benthic organisms, sponges have the capacity to disrupt boundary flow as they pump large volumes of seawater into the water column. This seawater is chemically transformed as it passes through the sponge body as a consequence of sponge feeding, excretion, and the activities of microbial symbionts, with important effects on carbon and nutrient cycling and on the organisms in the water column and on the adjacent reef. In this review, we critically evaluate developments in the recently dynamic research area of sponge ecology on tropical reefs and provide a perspective for future studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010807
2020-01-03
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010807.html?itemId=/content/journals/10.1146/annurev-marine-010419-010807&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander BE, Liebrand K, Osinga R, van der Geest HG, Admiraal W et al. 2014. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLOS ONE 9:e109486
    [Google Scholar]
  2. Archer SK, Stevens JL, Rossi RE, Matterson KO, Layman CA 2017. Abiotic conditions drive significant variability in nutrient processing by a common Caribbean sponge, Irciniafelix. Limnol. Oceanogr. 62:1783–93
    [Google Scholar]
  3. Aronson RB, Precht WF, Toscano MA, Koltes KH 2002. The 1998 bleaching event and its aftermath on a coral reef in Belize. Mar. Biol. 141:435–47
    [Google Scholar]
  4. Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257–63
    [Google Scholar]
  5. Bayer K, Schmitt S, Hentschel U 2008. Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. . Environ. Microbiol 10:2942–55
    [Google Scholar]
  6. Bell JJ, Bennett HM, Rovellini A, Webster NS 2018a. Sponges to be winners under near-future climate scenarios. BioScience 68:955–68
    [Google Scholar]
  7. Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS 2013. Could some coral reefs become sponge reefs as our climate changes? Glob. Change Biol. 19:2613–24
    [Google Scholar]
  8. Bell JJ, Rovellini A, Davy SK, Taylor MW, Fulton EA et al. 2018b. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function?. Ecology 99:1920–31
    [Google Scholar]
  9. Brandt ME, Olinger LK, Chaves-Fonnegra A, Olson JB, Gochfeld DJ 2019. Coral recruitment is impacted by the presence of a sponge community. Mar. Biol. 166:49
    [Google Scholar]
  10. Butler MJ, Hunt JH, Herrnkind WF, Childress MJ, Bertelsen R et al. 1995. Cascading disturbances in Florida Bay, USA: cyanobacteria blooms, sponge mortality, and implications for juvenile spiny lobsters Panulirusargus. Mar. Ecol. Prog. Ser 129:119–25
    [Google Scholar]
  11. Chanas B, Pawlik JR. 1995. Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Mar. Ecol. Prog. Ser. 127:195–211
    [Google Scholar]
  12. Chanas B, Pawlik JR. 1996. Does the skeleton of a sponge provide a defense against predatory reef fish?. Oecologia 107:225–31
    [Google Scholar]
  13. Chaves-Fonnegra A, Zea S. 2011. Coral colonization by the encrusting excavating Caribbean sponge Cliona delitrix. Mar. Ecol. Evol. Perspect 32:162–73
    [Google Scholar]
  14. Chaves-Fonnegra A, Zea S, Gómez ML 2007. Abundance of the excavating sponge Cliona delitrix in relation to sewage discharge at San Andrés island, SW Caribbean, Colombia. Bol. Investig. Mar. Costeras 36:63–78
    [Google Scholar]
  15. Cowart JD, Henkel TP, McMurray SE, Pawlik JR 2006. Sponge orange band (SOB): a pathogenic-like condition of the giant barrel sponge, Xestospongia muta. Coral Reefs 25:513
    [Google Scholar]
  16. de Bakker DM, van Duyl FC, Bak RPM, Nugues MM, Nieuwland G, Meesters EH 2017. 40 years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats. Coral Reefs 36:355–67
    [Google Scholar]
  17. de Goeij JM, de Kluijver A, van Duyl FC, Vacelet J, Wijffels RH et al. 2009. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J. Exp. Biol. 212:3892–900
    [Google Scholar]
  18. de Goeij JM, Lesser MP, Pawlik JR 2017. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization JL Carballo, JJ Bell 373–410 Cham, Switz: Springer
    [Google Scholar]
  19. de Goeij JM, Moodley L, Houtekamer M, Carballeira NM, van Duyl FC 2008a. Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: evidence for DOM feeding. Limnol. Oceanogr. 53:1376–86
    [Google Scholar]
  20. de Goeij JM, van den Berg H, van Oostveen MM, Epping EHG, Van Duyl FC 2008b. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357:139–51
    [Google Scholar]
  21. de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ et al. 2013. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342:108–10
    [Google Scholar]
  22. Diaz MC, Rützler K. 2001. Sponges: an essential component of Caribbean coral reefs. Bull. Mar. Sci. 69:535–46
    [Google Scholar]
  23. Diaz MC, Ward BB. 1997. Sponge-mediated nitrification in tropical benthic communities. Mar. Ecol. Prog. Ser. 156:97–107
    [Google Scholar]
  24. Engel S, Pawlik JR. 2005. Interactions among Florida sponges. II. Mangrove habitats. Mar. Ecol. Prog. Ser. 303:145–52
    [Google Scholar]
  25. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S et al. 2012. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. PNAS 109:E1878–87
    [Google Scholar]
  26. Fiore CL, Baker DM, Lesser MP 2013. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen?. PLOS ONE 8:e72961
    [Google Scholar]
  27. Fiore CL, Freeman CJ, Kujawinski EB 2017. Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter. PeerJ 5:e2870
    [Google Scholar]
  28. Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P et al. 2014. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227:78–88
    [Google Scholar]
  29. Goreau TF, Hartman WD. 1966. Sponge: effect on the form of reef corals. Science 151:343–44
    [Google Scholar]
  30. Haas AF, Nelson CE, Kelly LW, Carlson CA, Rohwer F et al. 2011. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLOS ONE 6:e27973
    [Google Scholar]
  31. Hadas E, Shpigel M, Ilan M 2009. Particulate organic matter as a food source for a coral reef sponge. J. Exp. Biol. 212:3643–50
    [Google Scholar]
  32. Hansell DA, Carlson CA, eds. 2015. Biogeochemistry of Marine Dissolved Organic Matter San Diego, CA: Academic
  33. Hatcher A. 1994. Nitrogen and phosphorus turnover in some benthic marine invertebrates: implications for the use of C:N ratios to assess food quality. Mar. Biol. 121:161–66
    [Google Scholar]
  34. Hedges JI. 1992. Global biogeochemical cycles: progress and problems. Mar. Chem. 39:67–93
    [Google Scholar]
  35. Helber SB, Hoeijmakers DJJ, Muhando CA, Rohde S, Schupp PJ 2018. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLOS ONE 13:e0197617
    [Google Scholar]
  36. Hoer DR, Gibson PJ, Tommerdahl JP, Lindquist NL, Martens CS 2018. Consumption of dissolved organic carbon by Caribbean reef sponges. Limnol. Oceanogr. 63:337–51
    [Google Scholar]
  37. Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T et al. 2005. An anaerobic world in sponges. Geomicrobiol. J. 22:1–10
    [Google Scholar]
  38. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G et al. 2009. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol 11:2228–43
    [Google Scholar]
  39. Hooper JNA, Levi C. 1994. Biogeography of Indo-West Pacific sponges: Microcionidae, Raspaliidae, Axinellidae. Sponges in Time and Space RWM van Soest, TMG van Kempen, JC Braekman 191–212 Rotterdam, Neth.: Belkema
    [Google Scholar]
  40. Jiménez E, Ribes M. 2007. Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol. Oceanogr. 52:948–58
    [Google Scholar]
  41. Jørgensen CB. 1976. August Putter, August Krough, and modern ideas on the use of dissolved organic matter in aquatic environments. Biol. Rev. Camb. Philos. Soc. 51:291–328
    [Google Scholar]
  42. Kahn AS, Chu JWF, Leys SP 2018. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Sci. Rep. 8:756
    [Google Scholar]
  43. Kahn AS, Leys SP. 2016. The role of cell replacement in benthic-pelagic coupling by suspension feeders. R. Soc. Open Sci. 3:160484
    [Google Scholar]
  44. Kahng SE, Copus JM, Wagner D 2014. Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr. Opin. Environ. Sustain. 7:72–81
    [Google Scholar]
  45. Kelly SR, Garo E, Jensen PR, Fenical W, Pawlik JR 2005. Effects of Caribbean sponge secondary metabolites on bacterial surface colonization. Aquat. Microb. Ecol. 40:191–203
    [Google Scholar]
  46. Leong W, Pawlik JR. 2010a. Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Mar. Ecol. Prog. Ser. 406:71–78
    [Google Scholar]
  47. Leong W, Pawlik JR. 2010b. Fragments or propagules? Reproductive tradeoffs among Callyspongia spp. from Florida coral reefs. Oikos 119:1417–22
    [Google Scholar]
  48. Lesser MP. 2006. Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328:277–88
    [Google Scholar]
  49. Lesser MP, Slattery M. 2013. Ecology of Caribbean sponges: Are top-down or bottom-up processes more important?. PLOS ONE 8:e79799
    [Google Scholar]
  50. Lesser MP, Slattery M. 2018. Sponge density increases with depth throughout the Caribbean. Ecosphere 9:e02525
    [Google Scholar]
  51. Lesser MP, Slattery M. 2019. Sponge density increases with depth throughout the Caribbean: reply. Ecosphere 10:e02690
    [Google Scholar]
  52. Leys SP, Lauzon NRJ. 1998. Hexactinellid sponge ecology: growth rates and seasonality in deep water sponges. J. Exp. Mar. Biol. Ecol. 230:111–29
    [Google Scholar]
  53. Loh TL, McMurray SE, Henkel TP, Vicente J, Pawlik JR 2015. Indirect effects of overfishing on Caribbean reefs: Sponges overgrow reef-building corals. PeerJ 3:e901
    [Google Scholar]
  54. Loh TL, Pawlik JR. 2009. Bitten down to size: Fish predation determines growth form of the Caribbean coral reef sponge Mycale laevis. . J. Exp. Mar. Biol. Ecol 374:45–50
    [Google Scholar]
  55. Loh TL, Pawlik JR. 2014. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. PNAS 111:4151–56
    [Google Scholar]
  56. Lopez-Acosta M, Leynaert A, Grall J, Maldonado M 2018. Silicon consumption kinetics by marine sponges: an assessment of their role at the ecosystem level. Limnol. Oceanogr. 63:2508–22
    [Google Scholar]
  57. Lorders FL, Miranda RJ, Nunes JACC, Barros F 2018. Spongivory by fishes on southwestern Atlantic coral reefs: no evidence of top-down control on sponge assemblages. Front. Mar. Sci. 5:256
    [Google Scholar]
  58. Lukowiak M, Cramer KL, Madzia D, Hynes MG, Norris RD, O'Dea A 2018. Historical change in a Caribbean reef sponge community and long-term loss of sponge predators. Mar. Ecol. Prog. Ser. 601:127–37
    [Google Scholar]
  59. Maldonado M. 2016. Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its origin and nature. Mar. Ecol. Evol. Perspect. 37:477–91
    [Google Scholar]
  60. Maldonado M, Aguilar R, Blanco J, Garcia S, Serrano A, Punzon A 2015. Aggregated clumps of lithistid sponges: a singular, reef-like bathyal habitat with relevant paleontological connections. PLOS ONE 10:e0125378
    [Google Scholar]
  61. Maldonado M, Carmona MG, Uriz MJ, Cruzado A 1999. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785–88
    [Google Scholar]
  62. Maldonado M, Ribes M, van Duyl FC 2012. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv. Mar. Biol. 62:113–82
    [Google Scholar]
  63. Maldonado M, Riesgo A, Bucci A, Rutzler K 2010a. Revisiting silicon budgets at a tropical continental shelf: Silica standing stocks in sponges surpass those in diatoms. Limnol. Oceanogr. 55:2001–10
    [Google Scholar]
  64. Maldonado M, Zhang XC, Cao XP, Xue LY, Cao H, Zhang W 2010b. Selective feeding by sponges on pathogenic microbes: a reassessment of potential for abatement of microbial pollution. Mar. Ecol. Prog. Ser. 403:75–89
    [Google Scholar]
  65. McClenachan L, Jackson JBC, Newman MJH 2006. Conservation implications of historic sea turtle nesting beach loss. Front. Ecol. Environ. 4:290–96
    [Google Scholar]
  66. McMurray SE, Finelli CM, Pawlik JR 2015. Population dynamics of giant barrel sponges on Florida coral reefs. J. Exp. Mar. Biol. Ecol. 473:73–80
    [Google Scholar]
  67. McMurray SE, Johnson ZI, Hunt DE, Pawlik JR, Finelli CM 2016. Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol. Oceanogr. 61:1271–86
    [Google Scholar]
  68. McMurray SE, Pawlik JR, Finelli CM 2014. Trait-mediated ecosystem impacts: how morphology and size affect pumping rates of the Caribbean giant barrel sponge. Aquat. Biol. 23:1–13
    [Google Scholar]
  69. McMurray SE, Pawlik JR, Finelli CM 2017. Demography alters carbon flux for a dominant benthic suspension feeder, the giant barrel sponge, on Conch Reef, Florida Keys. Funct. Ecol. 31:2188–98
    [Google Scholar]
  70. McMurray SE, Stubler AD, Erwin PM, Finelli CM, Pawlik JR 2018. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588:1–14
    [Google Scholar]
  71. Meylan A. 1988. Spongivory in hawksbill turtles: a diet of glass. Science 239:393–95
    [Google Scholar]
  72. Middelburg JJ. 2015. Escape by dilution. Science 348:290
    [Google Scholar]
  73. Mohamed NM, Colman AS, Tal Y, Hill RT 2008. Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ. Microbiol. 10:2910–21
    [Google Scholar]
  74. Mohamed NM, Saito K, Tal Y, Hill RT 2010. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48
    [Google Scholar]
  75. Morganti T, Coma R, Yahel G, Ribes M 2017. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol. Oceanogr. 62:1963–83
    [Google Scholar]
  76. Mueller B, de Goeij JM, Vermeij MJA, Mulders Y, van der Ent E et al. 2014. Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC). PLOS ONE 9:e90152
    [Google Scholar]
  77. Mumby PJ, Steneck RS. 2018. Paradigm lost: dynamic nutrients and missing detritus on coral reefs. BioScience 68:487–95
    [Google Scholar]
  78. Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M et al. 2008. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat. Bot. 89:155–85
    [Google Scholar]
  79. Nelson CE, Goldberg SJ, Kelly LW, Haas AF, Smith JE et al. 2013. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J 7:962–79
    [Google Scholar]
  80. Parry DM, Nickell LA, Kendall MA, Burrows MT, Pilgrim DA et al. 2002. Comparison of abundance and spatial distribution of burrowing megafauna from diver and remotely operated vehicle observations. Mar. Ecol. Prog. Ser. 244:89–93
    [Google Scholar]
  81. Pawlik JR. 1998. Coral reef sponges: Do predatory fishes affect their distribution?. Limnol. Oceanogr. 43:1396–99
    [Google Scholar]
  82. Pawlik JR. 2011. The chemical ecology of sponges on Caribbean reefs: Natural products shape natural systems. BioScience 61:888–98
    [Google Scholar]
  83. Pawlik JR, Burkepile DE, Thurber RV 2016. A vicious circle? Altered carbon and nutrient cycling may explain the low resilience of Caribbean coral reefs. BioScience 66:470–76
    [Google Scholar]
  84. Pawlik JR, Henkel TP, McMurray SE, Lopez-Legentil S, Loh TL, Rohde S 2008. Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off. Mar. Ecol. Prog. Ser. 368:137–43
    [Google Scholar]
  85. Pawlik JR, Loh TL. 2017. Biogeographical homogeneity of Caribbean coral reef benthos. J. Biogeogr. 44:960–62
    [Google Scholar]
  86. Pawlik JR, Loh TL, McMurray SE 2018. A review of bottom-up versus top-down control of sponges on Caribbean fore-reefs: what's old, what's new, and future directions. PeerJ 6:e4343
    [Google Scholar]
  87. Pawlik JR, Loh TL, McMurray SE, Finelli CM 2013. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLOS ONE 8:e6257
    [Google Scholar]
  88. Pawlik JR, McMurray SE, Erwin P, Zea S 2015. A review of evidence for food limitation of sponges on Caribbean reefs. Mar. Ecol. Prog. Ser. 519:265–83
    [Google Scholar]
  89. Pawlik JR, McMurray SE, Henkel TP 2007a. Abiotic factors control sponge ecology in Florida mangroves. Mar. Ecol. Prog. Ser. 339:93–98
    [Google Scholar]
  90. Pawlik JR, Scott A. 2019. Sponge density increases with depth throughout the Caribbean: comment. Ecosphere 10:e02689
    [Google Scholar]
  91. Pawlik JR, Steindler L, Henkel TP, Beer S, Ilan M 2007b. Chemical warfare on coral reefs: Sponge metabolites differentially affect coral symbiosis in situ. Limnol. Oceanogr. 52:907–11
    [Google Scholar]
  92. Randall JE, Hartman WD. 1968. Sponge-feeding fishes of the West Indies. Mar. Biol. 1:216–25
    [Google Scholar]
  93. Reiswig HM. 1974. Water transport, respiration and energetics of three tropical marine sponges. J. Exp. Mar. Biol. Ecol. 14:231–49
    [Google Scholar]
  94. Reiswig HM. 1981. Partial carbon and energy budgets of the bacteriosponge Verongia fistularis (Porifera: Demospongiae) in Barbados. Mar. Ecol. 2:273–93
    [Google Scholar]
  95. Ribes M, Coma R, Atkinson MJ, Kinzie RA III 2003. Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar. Ecol. Prog. Ser. 257:13–23
    [Google Scholar]
  96. Ribes M, Dziallas C, Coma R, Riemann L 2015. Microbial diversity and putative diazotrophy in high- and low-microbial-abundance Mediterranean sponges. Appl. Environ. Microbiol. 81:5683–93
    [Google Scholar]
  97. Ribes M, Jimenez E, Yahel G, Lopez-Sendino P, Diez B et al. 2012. Functional convergence of microbes associated with temperate marine sponges. Environ. Microbiol. 14:1224–39
    [Google Scholar]
  98. Rivero Calle S 2010. Ecological aspects of sponges in mesophotic coral ecosystems M.S. Thesis Univ. P.R. https://scholar.uprm.edu/handle/20.500.11801/1610
  99. Rix L, Bednarz VN, Cardini U, van Hoytema N, Al-Horani FA et al. 2015. Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the northern Red Sea. Mar. Ecol. Prog. Ser. 533:79–92
    [Google Scholar]
  100. Rix L, de Goeij JM, Mueller CE, Struck U, Middelburg JJ et al. 2016. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci. Rep. 6:18715
    [Google Scholar]
  101. Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA et al. 2017. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct. Ecol. 31:778–89
    [Google Scholar]
  102. Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA et al. 2018. Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar. Ecol. Prog. Ser. 589:85–96
    [Google Scholar]
  103. Santin A, Grinyo J, Ambroso S, Uriz MJ, Gori A et al. 2018. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea). Deep-Sea Res. I 131:75–86
    [Google Scholar]
  104. Santin A, Grinyo J, Ambroso S, Uriz MJ, Gori A et al. 2019. Distribution patterns and demographic trends of demosponges at the Menorca Channel (Northwestern Mediterranean Sea). Prog. Oceanogr. 173:9–25
    [Google Scholar]
  105. Scheffers SR, Nieuwland G, Bak RPM, van Duyl FC 2004. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs 23:413–22
    [Google Scholar]
  106. Schläppy ML, Schottner SI, Lavik G, Kuypers MMM, de Beer D, Hoffmann F 2010. Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar. Biol. 157:593–602
    [Google Scholar]
  107. Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE, Atwood TB et al. 2018. Animals and the zoogeochemistry of the carbon cycle. Science 362:eaar3213
    [Google Scholar]
  108. Schönberg CHL, Fang JK-H, Carballo JL 2017a. Bioeroding sponges and the future of coral reefs. Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization JL Carballo, JJ Bell 179–372 Cham, Switz.: Springer
    [Google Scholar]
  109. Schönberg CHL, Fang JK-H, Carreiro-Silva M, Tribollet A, Wisshak M 2017b. Bioerosion: the other ocean acidification problem. ICES J. Mar. Sci. 74:895–925
    [Google Scholar]
  110. Scott AR, Pawlik JR. 2018. A review of the sponge increase hypothesis for Caribbean mesophotic reefs. Mar. Biodivers. 49:1073–83
    [Google Scholar]
  111. Semmler RF, Hoot WC, Reaka ML 2017. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36:433–44
    [Google Scholar]
  112. Silveira CB, Silva-Lima AW, Francini-Filho RB, Marques JSM, Almeida MG et al. 2015. Microbial and sponge loops modify fish production in phase-shifting coral reefs. Environ. Microbiol. 17:3832–46
    [Google Scholar]
  113. Southwell MW, Weisz JB, Martens CS, Lindquist N 2008. In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol. Oceanogr. 53:986–96
    [Google Scholar]
  114. Topcu NE, Perez T, Gregori G, Harmelin-Vivien M 2010. In situ investigation of Spongia officinalis (Demospongiae) particle feeding: coupling flow cytometry and stable isotope analysis. J. Exp. Mar. Biol. Ecol. 389:61–69
    [Google Scholar]
  115. Trussell GC, Lesser MP, Patterson MR, Genovese SJ 2006. Depth-specific differences in growth of the reef sponge Callyspongia vaginalis: role of bottom-up effects. Mar. Ecol. Prog. Ser. 323:149–58
    [Google Scholar]
  116. Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC 2005. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Mar. Pollut. Bull. 51:570–79
    [Google Scholar]
  117. Weisz JB, Lindquist N, Martens CS 2008. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities?. Oecologia 155:367–76
    [Google Scholar]
  118. Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M et al. 2011. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar. Freshw. Res. 62:205–15
    [Google Scholar]
  119. Wilkinson CR. 1987. Interocean differences in size and nutrition of coral reef sponge populations. Science 236:1654–57
    [Google Scholar]
  120. Wilkinson CR. 1988. Foliose Dictyoceratida of the Australian Great Barrier Reef: II. Ecology and distribution of these prevalent sponges. Mar. Ecol. 9:321–27
    [Google Scholar]
  121. Wilkinson CR, Cheshire AC. 1989. Patterns in the distribution of sponge populations across the central Great Barrier Reef. Coral Reefs 8:127–34
    [Google Scholar]
  122. Wilkinson CR, Cheshire AC. 1990. Comparisons of sponge populations across the barrier reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Mar. Ecol. Prog. Ser. 67:285–94
    [Google Scholar]
  123. Wooster MK, Marty MJ, Pawlik JR 2017. Defense by association: Sponge-eating fishes alter the small-scale distribution of Caribbean reef sponges. Mar. Ecol. Evol. Perspect. 38:e12410
    [Google Scholar]
  124. Wooster MK, McMurray SE, Pawlik JR, Morán XAG, Berumen ML 2019. Feeding and respiration by giant barrel sponges across a gradient of food abundance in the Red Sea. Limnol. Oceanogr. 64:1790–801
    [Google Scholar]
  125. Wulff JL. 2006. Ecological interactions of marine sponges. Can. J. Zool. 84:146–66
    [Google Scholar]
  126. Wulff JL. 2013. Recovery of sponges after extreme mortality events: morphological and taxonomic patterns in regeneration versus recruitment. Integr. Comp. Biol. 53:512–23
    [Google Scholar]
  127. Wulff JL. 2016. Sponge contributions to the geology and biology of reefs: past, present, and future. Coral Reefs at the Crossroads D Hubbard, C Rogers, J Lipps, G Stanley Jr 103–26 Dordrecht, Neth.: Springer
    [Google Scholar]
  128. Wulff JL. 2017. Bottom-up and top-down controls on coral reef sponges: disentangling within-habitat and between-habitat processes. Ecology 98:1130–39
    [Google Scholar]
  129. Yahel G, Sharp JH, Marie D, Hase C, Genin A 2003. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnol. Oceanogr. 48:141–49
    [Google Scholar]
  130. Zea S, Henkel TP, Pawlik JR 2014. The Sponge Guide: A Picture Guide to Caribbean Sponges. , 3rd ed.. http://www.spongeguide.org
  131. Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT 2015. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. PNAS 112:4381–86
    [Google Scholar]
  132. Zhang F, Vicente J, Hill RT 2014. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima. Front. Microbiol 5:561
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010807
Loading
/content/journals/10.1146/annurev-marine-010419-010807
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error