1932

Abstract

Bays in coastal upwelling regions are physically driven and biochemically fueled by their interaction with open coastal waters. Wind-driven flow over the shelf imposes a circulation in the bay, which is also influenced by local wind stress and thermal bay–ocean density differences. Three types of bays are recognized based on the degree of exposure to coastal currents and winds (wide-open bays, square bays, and elongated bays), and the characteristic circulation and stratification patterns of each type are described. Retention of upwelled waters in bays allows for dense phytoplankton blooms that support productive bay ecosystems. Retention is also important for the accumulation of larvae, which accounts for high recruitment in bays. In addition, bays are coupled to the shelf ecosystem through export of plankton-rich waters during relaxation events. Ocean acidification and deoxygenation are a concern in bays because local extrema can develop beneath strong stratification.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-011020
2020-01-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-011020.html?itemId=/content/journals/10.1146/annurev-marine-010419-011020&mimeType=html&fmt=ahah

Literature Cited

  1. Aguiar E. 2016. Circulation at the transition zone between the shelf and the two southernmost Rias Baixas (NW Spain) PhD Thesis, Univ Vigo, Vigo, Spain:
  2. Aiken CM, Castillo MI, Navarrete SA 2008. A simulation of the Chilean Coastal Current and associated topographic upwelling near Valparaiso, Chile. Cont. Shelf Res. 28:2371–81
    [Google Scholar]
  3. Álvarez-Salgado XA, Gago J, Miguel BM, Gilcoto M, Pérez FF 2000. Surface waters of the NW Iberian margin: upwelling on the shelf versus outwelling of upwelled waters from the Rías Baixas. Estuar. Coast. Shelf Sci. 51:821–37
    [Google Scholar]
  4. Álvarez-Salgado XA, Roson G, Perez FF, Figueiras FG, Pazos Y 1996. Nitrogen cycling in an estuarine upwelling system, the Ria de Arousa (NW Spain). I. Short-time-scale patterns of hydrodynamic and biogeochemical circulation. Mar. Ecol. Prog. Ser. 135:259–73
    [Google Scholar]
  5. Arcos DF, Wilson RE. 1984. Upwelling and the distribution of chlorophyll a within the Bay of Concepción, Chile. Estuar. Coast. Shelf Sci. 18:25–35
    [Google Scholar]
  6. Argote-Espinoza ML, Gavidia-Medina FJ, Amador-Buenrostro A 1991. Wind-induced circulation in Todos Santos Bay, B.C., Mexico. Atmósfera 4:101–15
    [Google Scholar]
  7. Arístegui J, Barton ED, Álvarez-Salgado XA, Santos AMP, Figueiras FG et al. 2009. Sub-regional ecosystem variability in the Canary Current upwelling. Prog. Oceanogr. 83:33–48
    [Google Scholar]
  8. Bakun A. 1973. Coastal upwelling indices, west coast of North America, 1946–71 Tech. Rep. NMFS SSRF-671, Natl Ocean. Atmos. Adm Washington, DC:
  9. Barth JA, Pierce SD, Smith RL 2000. A separating coastal upwelling jet at Cape Blanco, Oregon and its connection to the California current system. Deep-Sea Res. II 47:783–810
    [Google Scholar]
  10. Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnol. Oceanogr. 57:698–710
    [Google Scholar]
  11. Barton ED. 2001. Turbulence and diffusion: island wakes. Encyclopedia of Ocean Sciences, Vol. 1 JH Steele, SA Thorpe, KK Turekian 1397–403 London: Academic
    [Google Scholar]
  12. Barton ED, Largier JL, Torres R, Sheridan M, Trasviña A et al. 2015. Coastal upwelling and downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo. Prog. Oceanogr. 134:173–89
    [Google Scholar]
  13. Barton ED, Torres R, Figueiras FG, Gilcoto M, Largier JL 2016. Surface water subduction during a downwelling event in a semienclosed bay. J. Geophys. Res. Oceans 121:7088–107
    [Google Scholar]
  14. Bonicelli J, Moffat C, Navarrete SA, Largier JL, Tapia FJ 2014. Spatial differences in thermal structure and variability within a small bay: interplay of diurnal wind and tides. Cont. Shelf Res. 88:72–80
    [Google Scholar]
  15. Booth JAT, McPhee-Shaw EE, Paul C, Kingsley E, Denny M et al. 2012. Natural intrusions of hypoxic, low pH water into the nearshore marine environments on the California coast. Cont. Shelf Res. 45:108–15
    [Google Scholar]
  16. Brink KH. 1983. The near-surface dynamics of coastal upwelling. Prog. Oceanogr. 12:223–57
    [Google Scholar]
  17. Broitman BR, Kinlan BP. 2006. Spatial scales of benthic and pelagic producer biomass in a coastal upwelling ecosystem. Mar. Ecol. Prog. Ser. 327:15–25
    [Google Scholar]
  18. Brown PC, Hutchings L. 1987. The development and decline of phytoplankton blooms in the southern Benguela upwelling system. 1. Drogue movements, hydrography and bloom development. S. Afr. J. Mar. Sci. 5:357–91
    [Google Scholar]
  19. Buck CM, Wilkerson FP, Parker AE, Dugdale RC 2014. The influence of coastal nutrients on phytoplankton productivity in a shallow low inflow estuary, Drakes Estero, California (USA). Estuaries Coasts 37:847–63
    [Google Scholar]
  20. Canu DM, Aveytua-Alcazar L, Camacho-Ibar VF, Querin S, Solidoro C 2016. Hydrodynamic properties of San Quintin Bay, Baja California: merging models and observations. Mar. Pollut. Bull. 108:203–14
    [Google Scholar]
  21. Castelao RM, Barth JA. 2005. Coastal ocean response in a region of alongshore bottom topography variations off Oregon during summer upwelling. J. Geophys. Res. 110:C10S04
    [Google Scholar]
  22. Castilla JC, Guiñez R, Caro AU, Ortiz V 2004. Invasion of a rocky intertidal shore by the tunicate Pyura praeputialis in the Bay of Antofagasta, Chile. PNAS 101:8517–24
    [Google Scholar]
  23. Castilla JC, Lagos NA, Guiñez R, Largier JL 2002. Embayments and nearshore retention of plankton: the Antofogasta Bay and other examples. See Castilla & Largier 2002 179–203
  24. Castilla JC, Largier JL, eds. 2002. The Oceanography and Ecology of the Nearshore and Bays in Chile Santiago: Ed. Univ. Catól. Chile
  25. Chadwick DB, Largier JL. 1999. The influence of tidal range on the exchange between San Diego Bay and the ocean. J. Geophys. Res. 104:29885–900
    [Google Scholar]
  26. Chavez FP, Sevadjian J, Wahl C, Friederich J, Friederich GE 2018. Measurements of pCO2 and pH from an autonomous surface vehicle in coastal upwelling system. Deep-Sea Res. II 151:137–46
    [Google Scholar]
  27. Checkley DM, Barth JA. 2009. Patterns and processes in the California Current System. Prog. Oceanogr. 83:49–64
    [Google Scholar]
  28. Coulliette C, Lekien F, Paduan JD, Haller G, Marsden JE 2007. Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics. Environ. Sci. Technol. 41:6562–72
    [Google Scholar]
  29. Crepon M, Richez C. 1982. Transient upwelling generated by two-dimensional atmospheric forcing and variability in the coastline. J. Phys. Oceanogr. 12:1437–57
    [Google Scholar]
  30. Crepon M, Richez C, Chartier M 1984. Effects of coastline geometry on upwellings. J. Phys. Oceanogr. 14:1365–82
    [Google Scholar]
  31. Crespo BG, Figueiras FG, Porras P, Teixeira IG 2006. Downwelling and dominance of autochthonous dinoflagellates in the NW Iberian margin: the example of the Ría de Vigo. Harmful Algae 5:770–81
    [Google Scholar]
  32. Croll DA, Marinovic B, Benson S, Chavez FP, Black N et al. 2005. From wind to whales: trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289:117–30
    [Google Scholar]
  33. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–29
    [Google Scholar]
  34. Durham WM, Stocker R. 2012. Thin phytoplankton layers: characteristics, mechanisms, and consequences. Annu. Rev. Mar. Sci. 4:177–207
    [Google Scholar]
  35. El Asri F, Martin D, Tamsouri M-N, Errhif A, Maanan M et al. 2019. Spatial and temporal variability in distribution, diversity, and structure of the polychaete assemblages from Dakhla Bay (Atlantic coast of South Morocco). Mar. Biodivers. 49:1271–81
    [Google Scholar]
  36. Enriquez AG, Friehe CA. 1995. Effects of wind stress and wind stress curl variability on coastal upwelling. J. Phys. Oceanogr. 25:1651–71
    [Google Scholar]
  37. Fajardo M, Andrade D, Bonicelli J, Bon M, Gómez G et al. 2018. Macrobenthic communities in a shallow normoxia to hypoxia gradient in the Humboldt upwelling ecosystem. PLOS ONE 13:e0200349
    [Google Scholar]
  38. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–92
    [Google Scholar]
  39. Fewings M, Lentz SJ, Fredericks J 2008. Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr. 38:2358–78
    [Google Scholar]
  40. Figueiras FG, Gómez E, Nogueira E, Villarino ML 1996. Selection of Gymnodinium catenatum under downwelling conditions in the Ría de Vigo. Harmful and Toxic Algal Blooms T Yasumoto, Y Oshima, Y Fukuyo 215–18 Paris: Intergov. Oceanogr. Comm. UNESCO
    [Google Scholar]
  41. Figueiras FG, Labarta U, Reiriz MJ 2002. Coastal upwelling, primary production and mussel growth in the Rías Baixas of Galicia. Hydrobiologia 484:121–31
    [Google Scholar]
  42. Figueroa D, Moffat C. 2000. On the influence of topography in the induction of coastal upwelling along the Chilean coast. Geophys. Res. Lett. 27:3905–8
    [Google Scholar]
  43. Filonov A, Lavin MF, Ladah LB, Tereshchenko I 2014. Spatial variability of internal waves in an open bay with a narrow steep shelf in the Pacific off NW Mexico. Cont. Shelf Res. 78:1–15
    [Google Scholar]
  44. Fischer AM, Ryan JP, Levesque C, Welschmeyer N 2014. Characterizing estuarine plume discharge into the coastal ocean using fatty acid biomarkers and pigment analysis. Mar. Environ. Res. 99:106–16
    [Google Scholar]
  45. Franks PJS. 1992. Sink or swim: accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82:1–12
    [Google Scholar]
  46. García-Reyes M, Largier JL. 2012. Seasonality of coastal upwelling off central and northern California: new insights including temporal and spatial variability. J. Geophys. Res. 117:C03028
    [Google Scholar]
  47. García-Reyes M, Largier JL, Sydeman WJ 2014. Synoptic-scale upwelling indices and predictions of phyto- and zooplankton populations. Prog. Oceanogr. 120:177–88
    [Google Scholar]
  48. Garreaud RD, Rutllant JA, Muñoz RC, Rahn DA, Ramos M, Figueroa D 2011. VOCALS-CUpEx: the Chilean Upwelling Experiment. Atmos. Chem. Phys. 11:2015–29
    [Google Scholar]
  49. Gilcoto M, Largier JL, Barton ED, Piedracoba S, Torres R et al. 2017. Rapid response to coastal upwelling in a semi-enclosed bay. Geophys. Res. Lett. 44:2388–97
    [Google Scholar]
  50. Gilcoto M, Pardo PC, Álvarez-Salgado XA, Pérez FF 2007. Exchange fluxes between the Ría de Vigo and the shelf: a bidirectional flow forced by remote wind. J. Geophys. Res. 112:C06001
    [Google Scholar]
  51. Graham WM, Field JG, Potts DC 1992. Persistent “upwelling shadows” and their influence on zooplankton distributions. Mar. Biol. 114:561–70
    [Google Scholar]
  52. Graham WM, Largier JL. 1997. Upwelling shadows as nearshore retention sites: the example of northern Monterey Bay. Cont. Shelf Res. 17:509–32
    [Google Scholar]
  53. Grantham BA, Chan F, Nielsen KJ, Fox DS, Barth JA et al. 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749–54
    [Google Scholar]
  54. Grundlingh ML, Largier JL. 1991. Physical oceanography in False Bay: a review. Trans. R. Soc. S. Afr. 47:387–400
    [Google Scholar]
  55. Halle CM, Largier JL. 2011. Surface circulation downstream of the Point Arena upwelling center. Cont. Shelf Res. 31:1260–72
    [Google Scholar]
  56. Harcourt-Baldwin JL. 2003. Water circulation within Tomales Bay, California, USA – a Mediterranean climate estuary PhD Thesis, Univ Cape Town, Cape Town, S. Afr:.
  57. Hastings A, Botsford LW. 2006. Persistence of spatial populations depends on returning home. PNAS 103:6067–72
    [Google Scholar]
  58. Hermann AJ, Hickey BM, Landry MR, Winter DF 1989. Coastal upwelling dynamics. Coastal Oceanography of Washington and Oregon MR Landry, BM Hickey 211–53 Amsterdam: Elsevier
    [Google Scholar]
  59. Hickey BM, Banas NS. 2003. Oceanography of the US Pacific northwest coastal ocean and estuaries with application to coastal ecology. Estuaries 26:1010–31
    [Google Scholar]
  60. Howard MDA, Sutula M, Caron DA, Chao Y, Farrara JD et al. 2014. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnol. Oceanogr. 59:285–97
    [Google Scholar]
  61. Hutchings L, van der Lingen C, Shannon L, Crawford R, Verheye HMS et al. 2009. The Benguela Current: an ecosystem of four components. Prog. Oceanogr. 83:15–32
    [Google Scholar]
  62. Hutchings L, Verheye HM, Huggett JA, Demarcq H, Cloete R et al. 2006. Variability of plankton with reference to fish variability in the Benguela Current large marine ecosystem—an overview. Benguela: Predicting a Large Marine Ecosystem V Shannon, G Hempel, P Malanotte-Rizzoli, C Moloney, J Woods 111–46 Amsterdam: Elsevier
    [Google Scholar]
  63. Jacox MG, Edwards CA, Hazen EL, Bograd SJ 2018. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast. J. Geophys. Res. 123:7332–50
    [Google Scholar]
  64. Jury MR. 1980. Characteristics of summer wind fields and air-sea interactions over the Cape Peninsula upwelling regions MS Thesis, Univ Cape Town, Cape Town, S. Afr:.
  65. Jury MR. 1985. Mesoscale variations in summer winds over the Cape Columbine – St Helena Bay region, South Africa. S. Afr. J. Mar. Sci. 3:77–88
    [Google Scholar]
  66. Jury MR. 1988. Case studies of the response and spatial distribution of wind-driven upwelling off the coast of Africa: 29–34° south. Cont. Shelf Res. 11:1257–71
    [Google Scholar]
  67. Kahru M, Mitchell BG, Diaz A, Miura M 2004. MODIS detects a devastating algal bloom in Paracas Bay, Peru. Eos Trans. AGU 85:465–72
    [Google Scholar]
  68. Kämpf J. 2017. Wind-driven overturning, mixing and upwelling in shallow water: a nonhydrostatic modeling study. J. Mar. Sci. Eng. 5:47
    [Google Scholar]
  69. Kämpf J, Chapman P. 2016. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems Cham, Switz.: Springer
  70. Kaplan DM, Largier JL. 2006. HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Res. II 53:2906–30
    [Google Scholar]
  71. Kaplan DM, Largier JL, Botsford LW 2005. HF radar observations of surface circulation off Bodega Bay (northern California, USA). J. Geophys. Res. 110:C10020
    [Google Scholar]
  72. Kaplan DM, Largier JL, Navarrete S, Guiñez R, Castilla JC 2003. Large diurnal temperature fluctuations in the nearshore water column. Estuar. Coast. Shelf Sci. 57:385–98
    [Google Scholar]
  73. Kimbro DL, Largier JL, Grosholz ED 2009. Coastal oceanographic processes influence the growth and size of a key estuarine species, the Olympia oyster. Limnol. Oceanogr. 54:1425–37
    [Google Scholar]
  74. Kudela RM, Banas NS, Barth JA, Frame ER, Jay D et al. 2008a. New insights into the controls and mechanisms of plankton productivity in coastal upwelling waters of the northern California Current System. Oceanography 21:446–59
    [Google Scholar]
  75. Kudela RM, Lane JQ, Cochlan WP 2008b. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae 8:103–10
    [Google Scholar]
  76. Ladah LB, Filonov AE, Lavín MF, Leichter JJ, Zertuche-González JA, Pérez-Mayorga D 2012. Cross-shelf transport of sub-thermocline nitrate by the internal tide and rapid (3–6 h) incorporation by an inshore macroalga. Cont. Shelf Res. 42:10–19
    [Google Scholar]
  77. Ladah LB, Tapia FJ, Pineda J, Lopez Mariscal JM 2005. Spatially heterogeneous, synchronous settlement of Chthamalus spp. larvae in northern Baja California. Mar. Ecol. Prog. Ser. 302:177–85
    [Google Scholar]
  78. Lagos NA, Barria I, Paolini P 2002. Upwelling ecosystem of northern Chile: integrating benthic ecology and coastal oceanography through remote sensing. See Castilla & Largier 2002 179–203
  79. Lagos NA, Benítez S, Duarte C, Lardies MA, Broitman BR et al. 2016. Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: implications for scallop aquaculture in an upwelling-influenced area. Aquac. Environ. Interact. 8:357–70
    [Google Scholar]
  80. Lamberth R, Nelson G. 1987. Field and analytical drogue studies applicable to the St Helena Bay area off South Africa's west coast. S. Afr. J. Mar. Sci. 5:163–69
    [Google Scholar]
  81. Largier JL. 2002. Linking oceanography and nearshore ecology: perspectives and challenges. See Castilla & Largier 2002 207–39
  82. Largier JL. 2003. Considerations in estimating larval dispersal distances from oceanographic data. Ecol. Appl. 13:S71–89
    [Google Scholar]
  83. Largier JL. 2004. The importance of retention zones in the dispersal of larvae. Am. Fish. Soc. Symp. 45:105–22
    [Google Scholar]
  84. Largier JL. 2010. Low-inflow estuaries: hypersaline, inverse and thermal scenarios. Contemporary Issues in Estuarine Physics A Valle-Levinson 247–72 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  85. Largier JL, Boyd A. 2001. Drifter observations of surface water transport in the Benguela Current during winter 1999. S. Afr. J. Sci. 97:223–29
    [Google Scholar]
  86. Largier JL, Hearn CJ, Chadwick DB 1996. Density structures in low-inflow “estuaries.”. Buoyancy Effects on Coastal and Estuarine Dynamics DG Aubrey, CT Friederichs 227–41 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  87. Largier JL, Lawrence CA, Roughan M, Kaplan DM, Dever EP et al. 2006. WEST: a northern California study of the role of wind-driven transport in the productivity of coastal plankton communities. Deep-Sea Res. II 53:2833–49
    [Google Scholar]
  88. Largier JL, Magnell BA, Winant CD 1993. Subtidal circulation over the northern California shelf. J. Geophys. Res. 98:18147–79
    [Google Scholar]
  89. Largier JL, Smith SV, Hollibaugh JT 1997. Seasonally hypersaline estuaries in Mediterranean-climate regions. Estuar. Coast. Shelf Sci. 45:789–97
    [Google Scholar]
  90. Lentz SJ. 1987. A heat budget for the Northern California Shelf during CODE 2. J. Geophys. Res. 92:14491–509
    [Google Scholar]
  91. Lewitus AJ, Horner RA, Caron DA, Garcia-Mendoza E, Hickey BM et al. 2012. Harmful algal blooms along the North American coastal region: history, trends, causes, and impacts. Harmful Algae 19:133–59
    [Google Scholar]
  92. Lucas AJ, Dupont CL, Tai V, Largier JL, Palenik B, Franks PJS 2011. The green ribbon: multiscale physical control of phytoplankton productivity and community structure over a narrow continental shelf. Limnol. Oceanogr. 56:611–26
    [Google Scholar]
  93. Lucas AJ, Pitcher GC, Probyn TA, Kudela RM 2014. The influence of diurnal winds on phytoplankton dynamics in a coastal upwelling system off southwestern Africa. Deep-Sea Res. II 101:50–62
    [Google Scholar]
  94. Lutjeharms JRE, Valentine HR, Van Ballegooyen RC 2000. The hydrography and water masses of the Natal Bight, South Africa. Cont. Shelf Res. 20:1907–39
    [Google Scholar]
  95. Marin V, Escribano R, Delgado LE, Olivares G, Hidalgo P 2001. Nearshore circulation in a coastal upwelling site off the Northern Humboldt current system. Cont. Shelf Res. 21:1317–29
    [Google Scholar]
  96. Martínez-Fuentes LM, Gaxiola-Castro G, Gómez-Ocampo E, Kahru M 2016. Effects of interannual events (1997–2012) on the hydrography and phytoplankton biomass of Sebastián Vizcaíno Bay. Cienc. Mar. 42:81–97
    [Google Scholar]
  97. McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG et al. 2016. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43:10366–76
    [Google Scholar]
  98. McPhee-Shaw EE, Nielsen KJ, Largier JL, Menge BA 2011. Nearshore chlorophyll-a events and wave-driven transport. Geophys. Res. Lett. 38:L02604
    [Google Scholar]
  99. Mohammed M, Mohammed OMC, Soumaya K, Aly D, Hassan E-R 2014. Metallic contamination assessment of the Lévrier Bay (Mauritanian Atlantic coast), using Perna perna and Venus rosalina. J. Environ. Solut 3:1–10
    [Google Scholar]
  100. Molloy FJ, Bolton JJ. 1995. Distribution, biomass and production of Gracilaria in Lüderitz Bay, Namibia. J. Appl. Phycol. 7:381–92
    [Google Scholar]
  101. Montecino V, Lange CB. 2009. The Humboldt Current System: ecosystem components and processes, fisheries, and sediment studies. Prog. Oceanogr. 83:65–70
    [Google Scholar]
  102. Monteiro PMS, Largier JL. 1999. Thermal stratification in Saldanha Bay (South Africa) and subtidal, density-driven exchange with the coastal waters of the Benguela upwelling system. Estuar. Coast. Shelf Sci. 49:877–90
    [Google Scholar]
  103. Morgan SG, Fisher JL, Largier JL 2011. Larval retention, entrainment and accumulation in the lee of a small headland: recruitment hotspots along windy coasts. Limnol. Oceanogr. 56:161–78
    [Google Scholar]
  104. Morgan SG, Fisher JL, McAfee ST, Largier JL, Halle CM 2012. Limited recruitment during relaxation events: larval advection and behavior in an upwelling system. Limnol. Oceanogr. 57:457–70
    [Google Scholar]
  105. Morgan SG, Fisher JL, Miller SH, McAfee ST, Largier JL 2009. Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90:3489–502
    [Google Scholar]
  106. Morgan SG, Shanks AL, MacMahan JH, Reniers AJHM, Feddersen F 2015. Planktonic subsidies to surf-zone and intertidal communities. Annu. Rev. Mar. Sci. 10:345–69
    [Google Scholar]
  107. Narvaez DA, Navarrete SA, Largier JL, Vargas CA 2006. Onshore advection of warm water, larval invertebrate settlement, and relaxation of upwelling off central Chile. Mar. Ecol. Prog. Ser. 309:159–73
    [Google Scholar]
  108. Nelson G, Hutchings L. 1987. Passive transport of pelagic system components in the southern Benguela area. S. Afr. J. Mar. Sci. 5:223–34
    [Google Scholar]
  109. Nidzieko NJ, Largier JL. 2013. Inner shelf intrusions of offshore water in an upwelling system affect coastal connectivity. Geophys. Res. Lett. 40:5423–28
    [Google Scholar]
  110. Oey LY. 1996. Flow around a coastal bend: a model of the Santa Barbara Channel eddy. J. Geophys. Res. 101:16667–82
    [Google Scholar]
  111. Oliveira PB, Amorim FN, Dubert JP, Nolasco R, Moita T 2019. Phytoplankton distribution and physical processes off NW Iberia during two consecutive upwelling seasons. Cont. Shelf Res. In press
    [Google Scholar]
  112. Oliveira PB, Moita T, Silva A, Monteiro IT, Palma AS 2009. Summer diatom and dinoflagellate blooms in Lisbon Bay from 2002 to 2005: pre-conditions inferred from wind and satellite data. Prog. Oceanogr. 83:270–77
    [Google Scholar]
  113. Paduan JD, Cook MS, Tapia VM 2018. Patterns of upwelling and relaxation around Monterey Bay based on long-term observations of surface currents from high-frequency radar. Deep-Sea Res. II 151:129–36
    [Google Scholar]
  114. Paduan JD, Rosenfeld LK. 1996. Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar). J. Geophys. Res. 101:20669–86
    [Google Scholar]
  115. Penven P, Roy C, de Verdiere AC, Largier J 2000. Simulation of a coastal jet retention process using a barotropic model. Oceanolog. Acta 23:615–34
    [Google Scholar]
  116. Peterson WT, Arcos DF, McManus GB, Dam H, Bellantoni D et al. 1988. The nearshore zone during coastal upwelling: daily variability and coupling between primary and secondary production off central Chile. Prog. Oceanogr. 20:1–40
    [Google Scholar]
  117. Pfaff MC, Branch GM, Fisher JL, Hoffmann V, Ellis AG, Largier JL 2015. Delivery of marine larvae to shore requires multiple sequential transport mechanisms. Ecology 96:1399–410
    [Google Scholar]
  118. Piedracoba S, Álvarez-Salgado XA, Rosón G, Herrera JL 2005. Short-timescale thermohaline variability and residual circulation in the central segment of the coastal upwelling system of the Ría de Vigo (northwest Spain) during four contrasting periods. J. Geophys. Res. 110:C03018
    [Google Scholar]
  119. Piedracoba S, Rosón G, Varela RA 2016. Origin and development of recurrent dipolar vorticity structures in the outer Ría de Vigo (NW Spain). Cont. Shelf Res. 118:143–53
    [Google Scholar]
  120. Piñones A, López Castilla JD, Guiñez R, Largier JL 2007. Nearshore surface temperatures in Antofagasta Bay (Chile) and adjacent upwelling centers. Cienc. Mar. 33:37–48
    [Google Scholar]
  121. Pitcher GC, Figueiras FG, Hickey BM, Moita MT 2010. The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog. Oceanogr. 85:5–32
    [Google Scholar]
  122. Pitcher GC, Nelson G. 2006. Characteristics of the surface boundary layer important to the development of red tide on the southern Namaqua shelf of the Benguela upwelling system. Limnol. Oceanogr. 51:2660–74
    [Google Scholar]
  123. Pitcher GC, Probyn TA, du Randt A, Lucas AJ, Bernard S et al. 2014. Dynamics of oxygen depletion in the nearshore of a coastal embayment of the southern Benguela upwelling system. J. Geophys. Res. Oceans 119:2183–200
    [Google Scholar]
  124. Pitcher GC, Richardson AJ, Korrûbel JL 1996. The use of sea temperature in characterizing the mesoscale heterogeneity of phytoplankton in an embayment of the southern Benguela upwelling system. J. Plankton Res. 18:643–57
    [Google Scholar]
  125. Pitcher GC, Weeks S. 2006. The variability and potential for prediction of harmful algal blooms in the southern Benguela Current. Benguela: Predicting a Large Marine Ecosystem V Shannon, G Hempel, P Malanotte-Rizzoli, CL Moloney, J Woods 125–46 Amsterdam: Elsevier
    [Google Scholar]
  126. Pringle JM. 2002. Enhancement of wind-driven upwelling and downwelling by alongshore bathymetric variability. J. Phys. Oceanogr. 32:3101–12
    [Google Scholar]
  127. Relvas P, Barton ED. 2002. Mesoscale patterns in the Cape São Vicente (Iberian Peninsula) upwelling region. J. Geophys. Res. 107:3164
    [Google Scholar]
  128. Rennie SE, Largier JL, Lentz SJ 1999. Observations of a pulsed buoyancy current downstream of Chesapeake Bay. J. Geophys. Res. 104:18227–240
    [Google Scholar]
  129. Reyes-Mendoza O, Mariño-Tapia I, Herrera-Silveira J, Ruiz-Martínez G, Enriquez C, Largier J 2016. The effects of wind on upwelling off Cabo Catoche. J. Coast. Res. 32:638–50
    [Google Scholar]
  130. Rogers-Bennett L, Kudela R, Nielsen K, Paquin A, O'Kelly C et al. 2012. Dinoflagellate bloom coincides with marine invertebrate mortalities in northern California. Harmful Algae News 46:10–11
    [Google Scholar]
  131. Rosenfeld LK, Schwing FB, Garfield N, Tracy DE 1994. Bifurcated flow from an upwelling center: a cold water source for Monterey Bay. Cont. Shelf Res. 14:931–64
    [Google Scholar]
  132. Roughan M, Mace AJ, Largier JL, Morgan SG, Fisher JL, Carter ML 2005. Sub-surface recirculation and larval retention in the lee of a small headland: a variation on the upwelling shadow theme. J. Geophys. Res. 110:C10027
    [Google Scholar]
  133. Roughan M, Middleton JH. 2002. A comparison of observed upwelling mechanisms off the east coast of Australia. Cont. Shelf Res. 22:2551–72
    [Google Scholar]
  134. Roy C. 1998. An upwelling-induced retention area off Senegal: a mechanism to link upwelling and retention processes. S. Afr. J. Mar. Sci. 19:89–98
    [Google Scholar]
  135. Ruiz GM, Fofonoff PW, Ashton G, Minton MS, Miller AW 2013. Geographic variation in marine invasions among large estuaries: effects of ships and time. Ecol. Appl. 23:311–20
    [Google Scholar]
  136. Ryan JP, Chavez FP, Bellingham JG 2005. Physical-biological coupling in Monterey Bay, California: topographic influences on phytoplankton ecology. Mar. Ecol. Prog. Ser. 287:23–32
    [Google Scholar]
  137. Ryan JP, Fischer AM, Kudela RM, Gower JFR, King SA et al. 2009. Influences of upwelling and downwelling winds on red tide bloom dynamics in Monterey Bay, California. Cont. Shelf Res. 29:785–95
    [Google Scholar]
  138. Ryan JP, Harvey JBJ, Zhang Y, Woodson CB 2014. Distributions of invertebrate larvae and phytoplankton in a coastal upwelling system retention zone and peripheral front. J. Exp. Mar. Biol. Ecol. 459:51–60
    [Google Scholar]
  139. Ryan JP, McManus MA, Sullivan JM 2010. Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont. Shelf Res. 30:7–16
    [Google Scholar]
  140. Send U, Beardsley RC, Winant CD 1987. Relaxation from upwelling in the coastal ocean dynamics experiment. J. Geophys. Res. 92:1683–98
    [Google Scholar]
  141. Shanks AL, Grantham BA, Carr MH 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13:S159–69
    [Google Scholar]
  142. Shanks AL, Largier JL, Brink L, Brubaker J, Hooff R 2000. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45:230–36
    [Google Scholar]
  143. Shannon LV. 1985. The Benguela ecosystem, part 1. Evolution of the Benguela, physical features and processes. Oceanogr. Mar. Biol. Annu. Rev. 23:105–82
    [Google Scholar]
  144. Sobarzo M, Bravo L, Donoso D, Garces-Vargas J, Schneider W 2007. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75:363–82
    [Google Scholar]
  145. Sobarzo M, Saldías GS, Tapia FJ, Bravo L, Moffat C, Largier JL 2016. On subsurface cooling associated with the Biobio River Canyon (Chile). J. Geophys. Res. Oceans 121:4568–84
    [Google Scholar]
  146. Steger JM, Schwing FB, Collins CA, Rosenfeld LK, Garfield N, Gezgin E 2000. The circulation and water masses in the Gulf of the Farallones. Deep-Sea Res. II 47:907–46
    [Google Scholar]
  147. Suanda SH, Kumar N, Miller AJ, Di Lorenzo E, Haas K et al. 2016. Wind relaxation and a coastal buoyant plume north of Pt. Conception, CA: observations, simulations, and scalings. J. Geophys. Res. Oceans 121:7455–75
    [Google Scholar]
  148. Sydeman WJ, Thompson SA, García-Reyes M, Kahru M, Peterson WT, Largier JL 2014. Multivariate ocean-climate indicators (MOCI) for the central California Current: environmental change, 1990–2010. Prog. Oceanogr. 120:352–69
    [Google Scholar]
  149. Tapia FJ, Largier JL, Castillo M, Wieters EA, Navarrete SA 2014. Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile. PLOS ONE 9:e110841
    [Google Scholar]
  150. Valle-Levinson A, Atkinson LP, Figueroa D, Castro L 2003. Flow induced by upwelling winds in an equatorward facing bay: Gulf of Arauco, Chile. J. Geophys. Res. 108:3054
    [Google Scholar]
  151. Valle-Levinson A, Schneider W, Sobarzo M, Bello M, Bravo L et al. 2004. Wind-induced exchange at the entrance to Concepción Bay, an equatorward facing embayment in central Chile. Deep-Sea Res. II 51:2371–88
    [Google Scholar]
  152. Van Camp L, Nykjaer L, Mittelstaedt E, Schlittenhardt P 1991. Upwelling and boundary circulation off Northwest Africa as depicted by infrared and visible satellite observations. Prog. Oceanogr. 26:357–402
    [Google Scholar]
  153. Vander Woude AJ, Largier JL, Kudela RM 2006. Nearshore retention of upwelled waters north and south of Point Reyes (northern California)—patterns of surface temperature and chlorophyll observed in CoOP WEST. Deep-Sea Res. II 53:2985–98
    [Google Scholar]
  154. Walter RK, Reid EC, Davis KA, Armenta KJ, Merhoff K, Nidzieko NJ 2017. Local diurnal wind-driven variability and upwelling in a small coastal embayment. J. Geophys. Res. Oceans 122:955–72
    [Google Scholar]
  155. Walter RK, Woodson CB, Leary PR, Monismith SG 2014. Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J. Geophys. Res. Oceans 119:3517–34
    [Google Scholar]
  156. Washburn L, Fewings MR, Melton C, Gotschalk C 2011. The propagating response of coastal circulation due to wind relaxations along the central California coast. J. Geophys. Res. 116:C12028
    [Google Scholar]
  157. Weeks SJ, Barlow R, Roy C, Shillington FA 2006. Remotely sensed variability of temperature and chlorophyll in the southern Benguela: upwelling frequency and phytoplankton response. Afr. J. Mar. Sci. 28:493–509
    [Google Scholar]
  158. Weidberg N, Lobón C, López E, García Flórez L, Fernández L et al. 2014. Effect of nearshore surface slicks on meroplankton distribution: role of larval behaviour. Mar. Ecol. Prog. Ser. 506:15–30
    [Google Scholar]
  159. White JW, Botsford LW, Hastings A, Largier JL 2010. Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Mar. Ecol. Prog. Ser. 398:49–67
    [Google Scholar]
  160. Winant CD, Dorman CE, Friehe CA, Beardsley RC 1988. The marine layer off northern California: an example of supercritical channel flow. J. Atmos. Sci. 45:3588–605
    [Google Scholar]
  161. Wing SR, Largier JL, Botsford LW 1998. Coastal retention and longshore displacement of meroplankton near capes in eastern boundary currents: examples from the California Current. S. Afr. J. Mar. Sci. 19:119–27
    [Google Scholar]
  162. Wing SR, Largier JL, Botsford LW, Quinn JF 1995. Settlement and transport of benthic invertebrates in an intermittent upwelling region. Limnol. Oceanogr. 40:316–29
    [Google Scholar]
  163. Wolanski E, Imberger J, Heron ML 1984. Island wakes in shallow coastal waters. J. Geophys. Res. 89:10533–69
    [Google Scholar]
  164. Wong K-C, Valle-Levinson A. 2002. On the relative importance of the remote and local wind effects on the subtidal exchange at the entrance to the Chesapeake Bay. J. Mar. Res. 60:477–98
    [Google Scholar]
  165. Woodson CB. 2018. The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 10:421–41
    [Google Scholar]
  166. Woodson CB, Eerkes-Medrano DI, Flores-Morales A, Foley M, Henkel S et al. 2008. Diurnal upwelling driven by sea breezes in northern Monterey Bay: a local mechanism for larval delivery to the intertidal. ? Cont. Shelf Res. 27:2289–302
    [Google Scholar]
  167. Woodson CB, Washburn L, Barth JA, Hoover DJ, Kirincich AR et al. 2009. Northern Monterey Bay upwelling shadow front: observations of a coastally and surface-trapped buoyant plume. J. Geophys. Res. 114:C12013
    [Google Scholar]
  168. Yanicelli B, Castro LR, Valle-Levinson A, Atkinson L, Figueroa D 2006. Vertical distribution of decapod larvae in the entrance of an equatorward facing bay of central Chile: implications for transport. J. Plankton Res. 28:19–37
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-011020
Loading
/content/journals/10.1146/annurev-marine-010419-011020
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error