Skip to main content
Log in

The overexpression of OsSRO1a, which encodes an OsNINJA1- and OsMYC2-interacting protein, negatively affects OsMYC2-mediated jasmonate signaling in rice

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Key message

OsNINJA1-interacting protein, OsSRO1a, acts as a mediator that suppresses OsMYC2 activity in response to JA.

Abstract

Jasmonic acid (JA) is an important plant hormone for the stable growth and development of higher plants. The rice gene NOVEL INTERACTOR OF JAZ1 (OsNINJA1) interacts with Jasmonate ZIM-domain (JAZ) proteins and is a repressor of JA signaling. In this study, we identified several OsNINJA1-interacting proteins in rice from a yeast two-hybrid screen. Among the newly identified genes, we focused on SIMILAR TO RCD ONE1a (OsSRO1a) and investigated its role in JA signaling. Full-length OsSRO1a interacted with OsNINJA1 in plant cells but not in yeast cells. OsSRO1a also interacted with OsMYC2, a positive transcription factor in JA signaling, in both plant and yeast cells. The expression of OsSRO1a was upregulated at a late phase after JA treatment. Transgenic rice plants overexpressing OsSRO1a exhibited JA-insensitive phenotypes. In wild-type plants, JA induces resistance against rice bacterial blight, but this phenotype was suppressed in the OsSRO1a-overexpressing plants. Furthermore, the degradation of chlorophyll under dark-induced senescence conditions and the JA-induced upregulation of OsMYC2-responsive genes were suppressed in the OsSRO1a-overexpressing plants. These results suggest that OsSRO1a is a negative regulator of the OsMYC2-mediated JA signaling pathway in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta IF, Gasperini D, Chételat A, Stolz S, Santuari L, Farmer EE (2013) Role of NINJA in root jasmonate signaling. Proc Natl Acad Sci USA 110:15473–15478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlfors R, Lång S, Overmyer K, Jaspers P, Brosché M, Tauriainen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inzé D, Palva ET, Kangasjärvi J (2004) Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction-domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16:1925–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aravind L (2001) The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem Sci 26:273–275

    CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bart RS, Chern M, Vega-Sánchez ME, Canlas P, Ronald PC (2010) Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae. PLoS Genet. https://doi.org/10.1371/journal.pgen.1001123

    Article  PubMed  PubMed Central  Google Scholar 

  • Brosché M, Blomster T, Salojärvi J, Cui F, Sipari N, Leppälä J, Lamminmäki A, Tomai G, Narayanasamy S, Reddy RA, Keinänen M, Overmyer K, Kangasjärvi J (2014) Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004112

    Article  PubMed  PubMed Central  Google Scholar 

  • Bugge K, Staby L, Kemplen KR, O'Shea C, Bendsen SK, Jensen MK, Olsen JG, Skriver K, Kragelund BB (2018) Structure of radical-induced cell death1 hub domain reveals a common αα-scaffold for disorder in transcriptional networks. Structure 26:734–746

    CAS  PubMed  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671

    CAS  PubMed  Google Scholar 

  • Chou CM, Kao CH (1992) Methyl jasmonate, calcium, and leaf senescence in rice. Plant Physiol 99:1693–1694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Zhang Z, Wang Y, Wu J, Han X, Gu X, Lu T (2019) TWI1 regulates cell-to-cell movement of OSH15 to control leaf cell fate. New Phytol 221:326–340

    CAS  PubMed  Google Scholar 

  • De Vleesschauwer D, Gheysen G, Höfte M (2013) Hormone defense networking in rice: tales from a different world. Trends Plant Sci 18:555–565

    PubMed  Google Scholar 

  • Geerinck J, Pauwels L, De Jaeger G, Goossens A (2010) Dissection of the one-MegaDalton JAZ1 protein complex. Plant Signal Behav 5:1039–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomi K, Satoh M, Ozawa R, Shinonaga Y, Sanada S, Sasaki K, Matsumura M, Ohashi Y, Kanno H, Akimitsu K, Takabayashi J (2010) Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horvath)-induced resistance to bacterial blight in rice, Oryza sativa L. Plant J 61:46–57

    CAS  PubMed  Google Scholar 

  • Guo Q, Major IT, Howe GA (2018) Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. Curr Opin Plant Biol 44:72–81

    CAS  PubMed  Google Scholar 

  • Hashimoto J, Watanabe T, Seki T, Karasawa S, Izumikawa M, Seki T, Iemura S, Natsume T, Nomura N, Goshima N, Miyawaki A, Takagi M, Shin-Ya K (2009) Novel in vitro protein fragment complementation assay applicable to high-throughput screening in a 1536-well format. J Biomol Screen 14:970–979

    CAS  PubMed  Google Scholar 

  • Hazman M, Hause B, Eiche E, Nick P, Riemann M (2015) Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity. J Exp Bot 66:3339–3352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

  • Hilaire E, Young SA, Willard LH, McGee JD, Sweat T, Chittoor JM, Guikema JA, Leach JE (2001) Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant Microbe Interact 14:1411–1419

    CAS  PubMed  Google Scholar 

  • Jaspers P, Blomster T, Brosché M, Salojärvi J, Ahlfors R, Vainonen JP, Reddy RA, Immink R, Angenent G, Turck F, Overmyer K, Kangasjärvi J (2009) Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J 60:268–279

    CAS  PubMed  Google Scholar 

  • Jaspers P, Overmyer K, Wrzaczek M, Vainonen JP, Blomster T, Salojärvi J, Reddy RA, Kangasjärvi J (2010) The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genomics. https://doi.org/10.1186/1471-2164-11-170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashihara K, Onohata T, Okamoto Y, Uji Y, Mochizuki S, Akimitsu K, Gomi K (2019) Overexpression of OsNINJA1 negatively affects a part of OsMYC2-mediated abiotic and biotic responses in rice. J Plant Physiol 232:180–187

    CAS  PubMed  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kauffman HE, Reddy APK, Hsieh SPY, Merca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541

    Google Scholar 

  • Ke J, Ma H, Gu X, Thelen A, Brunzelle JS, Li J, Xu HE, Melcher K (2015) Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Sci Adv. https://doi.org/10.1126/sciadv.1500107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7:449–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BG, Fukumoto T, Tatano S, Gomi K, Ohtani K, Tada Y, Akimitsu K (2009) Molecular cloning and characterization of a thaumatin-like protein-encoding cDNA from rough lemon. Physiol Mol Plant Pathol 74:3–10

    CAS  Google Scholar 

  • Kiryu M, Hamanaka M, Yoshitomi K, Mochizuki S, Akimitsu K, Gomi K (2018) Rice terpene synthase 18 (OsTPS18) encodes a sesquiterpene synthase that produces an antibacterial (E)-nerolidol against a bacterial pathogen of rice. J Gen Plant Pathol 84:221–229

    CAS  Google Scholar 

  • Lee SH, Sakuraba Y, Lee T, Kim KW, An G, Lee HY, Peak NC (2015) Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. J Integr Plant Biol 57:562–576

    CAS  PubMed  Google Scholar 

  • Long JA, Woody S, Poethig S, Meyerowitz EM, Barton MK (2002) Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 129:2797–2806

    CAS  PubMed  Google Scholar 

  • Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    CAS  PubMed  Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390

    CAS  PubMed  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inzé D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rissel D, Heym PP, Thor K, Brandt W, Wessjohann LA, Peiter E (2017) No silver bullet—canonical poly(ADP-ribose) polymerases (PARPs) are no universal factors of abiotic and biotic stress resistance of Arabidopsis thaliana. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00059

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato H, Imiya Y, Ida S, Ichii M (1996) Characterization of four molybdenum cofactor mutants of rice, Oryza sativa L. Plant Sci 119:39–47

    CAS  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    CAS  PubMed  Google Scholar 

  • Sharma S, Kaur C, Singla-Pareek SL, Sopory SK (2016) OsSRO1a interacts with RNA binding domain-containing protein (OsRBD1) and functions in abiotic stress tolerance in yeast. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00062

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song A, Xue G, Cui P, Fan F, Liu H, Yin C, Sun W, Liang Y (2016) The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice. Sci Rep. https://doi.org/10.1038/srep24640

    Article  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto N, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol 26:337–340

    CAS  Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav. https://doi.org/10.4161/psb.24260

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Taniguchi S, Tamaoki D, Yoshitomi K, Akimitsu K, Gomi K (2014) Multiple roles of plant volatiles in jasmonate-induced defense response in rice. Plant Signal Behav. https://doi.org/10.4161/psb.29247

    Article  PubMed  PubMed Central  Google Scholar 

  • Taniguchi S, Hosokawa-Shinonaga Y, Tamaoki D, Yamada S, Akimitsu K, Gomi K (2014a) Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ 37:451–461

    CAS  PubMed  Google Scholar 

  • Taniguchi S, Miyoshi S, Tamaoki D, Yamada S, Tanaka K, Uji Y, Tanaka S, Akimitsu K, Gomi K (2014b) Isolation of jasmonate-induced sesquiterpene synthase of rice: product of which has an antifungal activity against Magnaporthe oryzae. J Plant Physiol 171:625–632

    CAS  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    CAS  PubMed  Google Scholar 

  • Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K (2016) Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice. Plant Cell Physiol 57:1814–1827

    CAS  PubMed  Google Scholar 

  • Uji Y, Akimitsu K, Gomi K (2017) Identification of OsMYC2-regulated senescence-associated genes in rice. Planta 245:1241–1246

    CAS  PubMed  Google Scholar 

  • Uji Y, Kashihara K, Kiyama H, Mochizuki S, Akimitsu K, Gomi K (2019) Jasmonic acid-induced VQ-motif-containing protein OsVQ13 influences the OsWRKY45 signaling pathway and grain size by associating with OsMPK6 in rice. Int J Mol Sci. https://doi.org/10.3390/ijms20122917

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The tify family previously known as ZIM. Trends Plant Sci 12:239–244

    CAS  PubMed  Google Scholar 

  • Wang L, Wu SM, Zhu Y, Fan Q, Zhang ZN, Hu G, Peng QZ, Wu JH (2017) Functional characterization of a novel jasmonate ZIM-domain interactor (NINJA) from upland cotton (Gossypium hirsutum). Plant Physiol Biochem 112:152–160

    CAS  PubMed  Google Scholar 

  • Wen-jun S, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res. https://doi.org/10.1093/nar/17.20.8385

    Article  Google Scholar 

  • Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2012) Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol 53:2060–2072

    CAS  PubMed  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Du H, Tang N, Li X, Xiong L (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71:291–305

    CAS  PubMed  Google Scholar 

  • Yoshitomi K, Taniguchi S, Tanaka K, Uji Y, Akimitsu K, Gomi K (2016) Rice terpene synthase 24 (OsTPS24) encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen. J Plant Physiol 191:120–126

    CAS  PubMed  Google Scholar 

  • You J, Zong W, Li X, Ning J, Hu H, Xiao J, Xiong L (2013) The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot 64:569–583

    CAS  PubMed  Google Scholar 

  • You J, Zong W, Du H, Hu H, Xiong L (2014) A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors. Plant Mol Biol 84:693–705

    CAS  PubMed  Google Scholar 

  • Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Pan X, Deng Y, Wu H, Liu P, Li X (2016) AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci Rep 6:24778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zweifel ME, Leahy DJ, Barrick D (2005) Structure and Notch receptor binding of the tandem WWE domain of Deltex. Structure 13:1599–1611

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Y. Nishizawa (National Institute of Agrobiological Sciences, NIAS), H. Kaku (NIAS), and N. Tanaka (Kagawa University) for providing the binary vector, Xoo strain, and yeast strain, respectively. We also thank Dr. I. Kataoka (Kagawa University), M. Satoh (National Agricultural Research Center for Kyushu Okinawa Region, NARO) and Dr. H. Kanno (NARO) for laying the foundation of a part of this study.

Funding

This work was supported in part by the Funding Program for the Next Generation World-Leading Researchers from Japan Society for Promotion of Science (No. GS022) and JSPS KAKENHI (No. 15K07313 and 18K05648).

Author information

Authors and Affiliations

Authors

Contributions

KG designed the research project. KK, TO, RY and ST performed the experiments. KK wrote the manuscript. KA modified the manuscript. All of the authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Kenji Gomi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Prakash P. Kumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashihara, K., Onohata, T., Yariuchi, R. et al. The overexpression of OsSRO1a, which encodes an OsNINJA1- and OsMYC2-interacting protein, negatively affects OsMYC2-mediated jasmonate signaling in rice. Plant Cell Rep 39, 489–500 (2020). https://doi.org/10.1007/s00299-019-02504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02504-z

Keywords

Navigation